Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Osteoarthritis Cartilage ; 19(10): 1210-8, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21816228

RESUMO

OBJECTIVE: This study investigated a novel approach to induce chondrogenic differentiation of human mesenchymal stem cells (hMSC). We hypothesized that a structured three-dimensional co-culture using hMSC and chondrocytes would provide chondroinductive cues to hMSC without inducing hypertrophy. METHOD: In an effort to promote optimal chondrogenic differentiation of hMSC, we created bilaminar cell pellets (BCPs), which consist of a spherical population of hMSC encased within a layer of juvenile chondrocytes (JC). In addition to histologic analyses, we examined proteoglycan content and expression of chondrogenic and hypertrophic genes in BCPs, JC pellets, and hMSC pellets grown in the presence or absence of transforming growth factor-ß (TGFß) following 21 days of culture in either growth or chondrogenic media. RESULTS: In either growth or chondrogenic media, we observed that BCPs and JC pellets produced more proteoglycan than hMSC pellets treated with TGFß. BCPs and JC pellets also exhibited higher expression of the chondrogenic genes Sox9, aggrecan, and collagen 2A1, and lower expression of the hypertrophic genes matrix metalloproteinase-13, Runx2, collagen 1A1, and collagen 10A1 than hMSC pellets. Histologic analyses suggest that JC promote chondrogenic differentiation of cells in BCPs without hypertrophy. Furthermore, when cultured in hypoxic and inflammatory conditions intended to mimic the injured joint microenvironment, BCPs produced significantly more proteoglycan than either JC pellets or hMSC pellets. CONCLUSION: The BCP co-culture promotes a chondrogenic phenotype without hypertrophy and, relative to pellet cultures of hMSCs or JCs alone, is more resistant to the adverse conditions anticipated at the site of articular cartilage repair.


Assuntos
Cartilagem Articular/citologia , Diferenciação Celular , Condrócitos/citologia , Células-Tronco Mesenquimais/citologia , Agrecanas/metabolismo , Cartilagem Articular/metabolismo , Técnicas de Cultura de Células/métodos , Condrócitos/metabolismo , Colágeno/genética , Colágeno/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Masculino , Metaloproteinase 13 da Matriz/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteoglicanas/metabolismo , Fatores de Transcrição SOX9/metabolismo , Fator de Crescimento Transformador beta/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...