Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 120(17): 174501, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29756846

RESUMO

A variety of industrial applications such as power generation, water distillation, and high-density cooling rely on heat transfer processes involving boiling. Enhancements to the boiling process can improve the energy efficiency and performance across multiple industries. Highly wetting textured surfaces have shown promise in boiling applications since capillary wicking increases the maximum heat flux that can be dissipated. Conversely, highly nonwetting textured (superhydrophobic) surfaces have been largely dismissed for these applications as they have been shown to promote formation of an insulating vapor film that greatly diminishes heat transfer efficiency. The current Letter shows that boiling from a superhydrophobic surface in an initial Wenzel state, in which the surface texture is infiltrated with liquid, results in remarkably low surface superheat with nucleate boiling sustained up to a critical heat flux typical of hydrophilic wetting surfaces, and thus upends this conventional wisdom. Two distinct boiling behaviors are demonstrated on both micro- and nanostructured superhydrophobic surfaces based on the initial wetting state. For an initial surface condition in which vapor occupies the interstices of the surface texture (Cassie-Baxter state), premature film boiling occurs, as has been commonly observed in the literature. However, if the surface texture is infiltrated with liquid (Wenzel state) prior to boiling, drastically improved thermal performance is observed; in this wetting state, the three-phase contact line is pinned during vapor bubble growth, which prevents the development of a vapor film over the surface and maintains efficient nucleate boiling behavior.

2.
Langmuir ; 33(43): 12028-12037, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-28953405

RESUMO

The design of structured surfaces for increasing the heat flux dissipated during boiling and evaporation processes via enhanced liquid rewetting requires prediction of the liquid meniscus shape on these surfaces. In this study, a general continuum model is developed to predict the three-dimensional meniscus shape of liquid films on micro/nanostructured surfaces based on a minimization of the system free energy that includes solid-liquid van der Waals interaction energy, surface energy, and gravitational potential. The continuum model is validated at the nanoscale against molecular dynamics simulations of water films on gold surfaces with pyramidal indentations, and against experimental measurements of water films on silicon V-groove channels at the microscale. The validated model is used to investigate the effect of film thickness and surface structure depth on the meniscus shape. The meniscus is shown to become more conformal with the surface structure as the film thickness decreases and the structure depth increases. Assuming small interface slope and small variation in film thickness, the continuum model can be linearized to obtain an explicit expression for the meniscus shape. The error of this linearized model is quantitatively assessed and shown to increase with increasing structure depth and decreasing structure pitch. The model developed can be used for accurate prediction of three-dimensional meniscus shape on structured surfaces with micro/nano-scale features, which is necessary for determining the liquid delivery rate and heat flux dissipated during thin-film evaporation. The linearized model is useful for rapid prediction of meniscus shape when the structure depth is smaller than or comparable to the liquid film thickness.

3.
Langmuir ; 33(32): 7847-7853, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28727438

RESUMO

Surface wettability is typically characterized by measuring the static contact angle of a sessile droplet placed on the surface. For extremely wetting surfaces on which liquid spontaneously spreads into a thin liquid film, the near-zero static contact angle is not amenable to measurement and does not fully describe the wetting behavior. There are unmet needs in microfluidics, boiling heat transfer enhancement, and antifogging applications for a metric to characterize highly wetting (i.e., superhydrophilic) textured surfaces based on their capillary-driven liquid pumping performance, as a supplement to the contact angle for this highly wetting regime. To describe the wetting behavior, the textured surface can be approximated as a thin porous layer through which the liquid spreads. An analytical model is developed for the volumetric flow in this layer, which reveals a single superhydrophilicity metric that captures the wetting behavior for a given liquid. A simple experimental approach is proposed to characterize this metric by measuring the volumetric liquid intake into the surface from a filled capillary tube. This approach is validated by characterizing micropillared superhydrophilic surfaces of known geometry; the predicted and measured wetting behaviors show good agreement. The metric proposed in this study offers a simple approach for accurately characterizing and differentiating highly wetting surfaces based on their liquid pumping ability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...