Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Bioinformation ; 10(10): 637-46, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25489173

RESUMO

Cyperus scariosus (R.Br) belongs to the family Cyperaceae and it has a diverse medicinal importance. To identify human cyclooxegenase-2 (COX-2) inhibitors from C. scariosus, the rhizome powder was exhaustively extracted with various solvents based on the increasing polarity. Based on the presence and absence of secondary metabolites, we have selected the methanolic extract to evaluate the anti-oxidant and anti-inflammatory activity. The same extract was further subjected to gas chromatography-mass spectroscopy (GC-MS) analysis to identify the active compounds. Binding affinities of these compounds towards anti-inflammatory protein COX-2 were analyzed using molecular docking interaction studies. Phytochemical analysis showed that methanol extract is positive for all secondary metabolites. The antioxidant activity of the C. scariosus rhizomes methanolic extract (CSRME) is half to that of ascorbic acid at 50 µg/ml. The anti-inflammatory activity of CSRME is higher than that of diclofenac sodium salt at high concentration, which is evident from the dose dependent inhibition of bovine serum albumin denaturation at 40 µg/ml-5 mg/ml. GC-MS analysis showed the presence of nine compounds, among all N-methyl-1-adamantaneacetamide and 1,5,diphenyl-2H-1,2,4- triazine form a hydrogen bond interactions with Ser-530 and Tyr-385 respectively and found similar interactions with crystal structure of diclofenac bound COX-2 protein. Benzene-1, 2-diol, 4-(4-bromo-3 chlorophenyl iminomethyl forms hydrogen bond interactions with Thr-199 and Thr-200 as similar to crystallized COX-2 protein with valdecoxib. Collectively our results suggest that CSRME contains medicinally important anti-inflammatory compounds and this justifies the use of this plant as a folklore medicine for preventing inflammation associated disorders.

2.
Bioresour Technol ; 152: 283-91, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24300846

RESUMO

A theoretical model for the prediction of biomass concentration under rice husk flue gas emission has been developed. The growth inhibitory model (GIM) considers the CO2 mass transfer rate, the critical SOx concentration and its role in pH-based inter-conversion of bicarbonate. The calibration and subsequent validation of the growth profile of Nannochloropsis limnetica at 2% and 10% (v/v) CO2 showed that the predicted values were consistent with the measured values, with r(2) being 0.96 and 0.98, respectively, and p<0.001 in both cases. The constants used in the GIM for the prediction of biomass have been justified using sensitivity analysis. GIM applicability was defined as ±30% of the calibrated flow rate (3.0 L min(-1)). This growth model can be applied to predict algal growth in photo-bioreactors treated with flue gas in the generation of biomass feed stock for biofuel production.


Assuntos
Atmosfera/química , Biomassa , Gases/farmacologia , Microalgas/crescimento & desenvolvimento , Modelos Teóricos , Sulfatos/farmacologia , Sulfitos/farmacologia , Calibragem , Dióxido de Carbono/farmacologia , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Microalgas/efeitos dos fármacos , Reprodutibilidade dos Testes , Reologia/efeitos dos fármacos
3.
Braz. j. microbiol ; 43(1): 12-20, Jan.-Mar. 2012. ilus, tab
Artigo em Inglês | LILACS | ID: lil-622786

RESUMO

The influence of aeration on algal growth and gamma-linolenic acid (GLA) production in a bubble column photobioreactor was investigated. Studies were performed in a 20-L reactor at different aeration rates (0.2-2.5 vvm). Static, continuous, and periodic operation of air resulted in 41.9%, 88.4%, and 108% air saturation of dissolved oxygen, for which the corresponding values of GLA were 2.3, 6.5, and 7.5 mg·g-1 dry cell weight, respectively. An increase in the aeration rate from 0.2 to 2.5 vvm enhanced both the specific growth rate and GLA content under periodic sparging in the bicarbonate medium. With a 6-fold increase in the aeration rate, the GLA content of the alga increased by 69.64% (5.6-9.5 mg· g-1 dry cell weight). In addition, the total fatty acid (TFA) content in dry biomass increased from 2.22% to 4.41%, whereas the algae maintained a constant GLA to TFA ratio within the aeration rate tested. The dependence of GLA production on the aeration rate was explained by interrelating the GLA production rate with the specific growth rate using the Luedeking and Piret mixed growth model.


Assuntos
Eucariotos/crescimento & desenvolvimento , Eucariotos/isolamento & purificação , Spirulina/crescimento & desenvolvimento , Spirulina/isolamento & purificação , Biomassa , Biotecnologia
4.
Braz J Microbiol ; 43(1): 12-20, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24031799

RESUMO

The influence of aeration on algal growth and gamma-linolenic acid (GLA) production in a bubble column photobioreactor was investigated. Studies were performed in a 20-L reactor at different aeration rates (0.2- 2.5 vvm). Static, continuous, and periodic operation of air resulted in 41.9%, 88.4%, and 108% air saturation of dissolved oxygen, for which the corresponding values of GLA were 2.3, 6.5, and 7.5 mg·g(-1) dry cell weight, respectively. An increase in the aeration rate from 0.2 to 2.5 vvm enhanced both the specific growth rate and GLA content under periodic sparging in the bicarbonate medium. With a 6-fold increase in the aeration rate, the GLA content of the alga increased by 69.64% (5.6-9.5 mg· g(-1) dry cell weight). In addition, the total fatty acid (TFA) content in dry biomass increased from 2.22% to 4.41%, whereas the algae maintained a constant GLA to TFA ratio within the aeration rate tested. The dependence of GLA production on the aeration rate was explained by interrelating the GLA production rate with the specific growth rate using the Luedeking and Piret mixed growth model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...