Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 9(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36983450

RESUMO

The Alternaria species are considered to produce a plethora of several mycotoxins constituting a risk factor for both human and animal health. This work aimed mainly to explore the cytotoxicity of a combined mixture of altenuene (ALT), alternariol (AOH), tenuazonic acid (TeA), and altenuisol (AS) toxins produced by pathogenic A. alternata toward human oral epithelial cells (PCS-200-014), lung fibroblast cells (WI-38), and male albino rats. The sequencing of the multi-locus, RNA polymerase second largest subunit (rpb2), glyceraldehyde-3-phosphate dehydrogenase (gapdh), and Alternaria major allergen gene (Alt a 1) was performed to infer relationships among isolated Alternaria species. The phylogenetic analysis of gapdh, rpb2, and Alt-a 1 sequence data indicated that all isolates resided in A. alternata. The pathogenic potentiality of A. alternata was investigated on tomato plants cv. super strain B under greenhouse conditions, and all isolates were pathogenic to tomato plants, with significant (p < 0.05) variations. The ability of A. alternata isolates to produce mycotoxins was also explored using high-performance liquid chromatography (HPLC). All tested isolates were able to produce at least one of the assessed mycotoxins-ALT, AOH, TeA, and AS-and ALT was reported as the dominant mycotoxin, produced by 80% of A. alternata isolates. The cytotoxic properties of the combined mixture of ALT, AOH, TeA, and AS at concentrations of 31.25, 62.50, 125, 250, and 500 µg/mL were assessed via the MTT assay method after exposure for 24 h versus the control. The treatment of both cell lines with combined mixtures of ALT, AOH, TeA, and AS showed a dose-dependent decrease in cell viability. The highest concentrations tested at 62.50, 125, 250, and 500 µg/mL significantly decreased cell viability and caused cell damage compared to the lowest concentration of 31.25 µg/mL and the control. The cytotoxicity and genotoxicity of the combined mixtures of ALT, AOH, TeA, and AS on male albino rats were also investigated via the gene expression of (TNF-α) and using hematological (CBC), chemical (alanine aminotransferase (ALT), aspartate aminotransferase (AST) and urea and creatinine), and histopathological analyses. A marked increase was observed in the levels of ALT, AST, urea and creatinine, TNF-α gene expression, red blood cells (RBCs), white blood cells (WBCs), hemoglobin (Hb), and packed cell volume % (PCV) after 28 days of exposure relative to the untreated control. Pathological alterations were also observed in the liver and kidney tissues of rats. Conclusively, this work provides a new understanding on the cytotoxicity and genotoxicity of mycotoxins of pathogenic A. alternata from tomatoes.

2.
J Fungi (Basel) ; 8(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36422024

RESUMO

Lasiodiplodia (family Botryosphaeriaceae) is a widely distributed fungal genus that causes a variety of diseases in tropical and subtropical regions. During 2020−2021, a routine survey of fruit tree plants was conducted in five Egyptian Governorates, and fresh samples exhibiting dieback, decline, leaf spot and root rot symptoms were collected. Collection from eight different symptomatic leaves, twigs, branches and roots of fruit trees yielded 18 Lasiodiplodia-like isolates. The sequencing data from the internal transcribed spacer region (ITS), partial translation elongation factor 1-alpha (tef1-a) and ß-tubulin (tub2) were used to infer phylogenetic relationships with known Lasiodiplodia species. Two isolates obtained from black necrotic lesions on Phoenix dactylifera leaves were identified as a putative novel species, L. newvalleyensis sp. nov., and were thus subjected to further morphological characterization. The results of isolation and molecular characterization revealed that L. theobromae (n = 9) was the most common species on Mangifera indica, Citrus reticulata, C. sinensis, Ficus carica, Prunus persica, Prunus armeniaca and Pyrus communis trees. Lasiodiplodia pseudotheobromae (n = 5) was isolated from M. indica, Prunus persica and C. sinensis. Lasiodiplodia laeliocattleyae (n = 2) was isolated from C. reticulata. Pathogenicity test results suggested that all Lasiodiplodia species were pathogenic to their hosts. The present study is considered the first to characterize and decipher the diversity of Lasiodiplodia species associated with fruit trees in Egypt, using the multi-locus ITS, tef1-a and tub2 sequence data, along with morphological and pathogenic trials. To our knowledge, this is the first report of L. newvalleyensis on Phoenix dactylifera and L. laeliocattleya on C. reticulata in Egypt and worldwide.

3.
Plants (Basel) ; 11(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35807674

RESUMO

Determining the appropriate parents for breeding programs is the most important decision that plant breeders must make to maximize the genetic variability and produce excellent recombinant genotypes. Several methods are used to identify genotypes with desirable phenotypic features for breeding experiments. In this study, five kalanchoe genotypes were morphologically characterized by assessing plant height, number of inflorescences, number of flowers, flower length, flower diameter and number of petals. The analysis showed the distinction of yellow kalanchoe in the plant height trait, while the orange kalanchoe was distinguished in the number of inflorescences, the number of flowers and flower length traits, whereas the violet kalanchoe possessed the largest flower diameter and the highest number of petals. The molecular profiling was performed by random amplified polymorphism DNA (RAPD), inter-simple sequence repeats (ISSR) and start codon targeted (SCoT)-polymerase chain reaction (PCR) tools. Genomic DNA was extracted from young leaves and the PCR reactions were performed using ten primers for each SCoT, ISSR and RAPD marker. Only four out of ten primers showed amplicon profiles in all PCR markers. A total of 70 bands were generated by SCoT, ISSR and RAPD-PCR with 35 polymorphic bands and 35 monomorphic bands. The total number of bands of RAPD, ISSR and SCoT was 15, 17 and 38, respectively. The polymorphism percentages achieved by RAPD, ISSR and SCoT were 60.25%, 15% and 57%, respectively. The cluster analysis based on morphological data revealed two clusters. Cluster I consisted of violet and orange kalanchoe, and cluster II comprised red, yellow and purple kalanchoe. Whereas the cluster analysis based on molecular data revealed three clusters. Cluster I included only yellow kalanchoe, cluster II comprised orange and violet kalanchoe while cluster III comprised red, and purple kalanchoe. The study concluded that orange, violet and yellow kalanchoe are distinguished parents for breeding economically valued traits in kalanchoe. Also, the study concluded that SCoT and RAPD markers reproduced reliable banding patterns to assess the genetic polymorphism among kalanchoe genotypes that consider the basis stone for genetic improvements in ornamental plants.

4.
Plants (Basel) ; 11(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35161231

RESUMO

Date palm (Phoenix dactylifera L.) is the most important edible fruit crop in Saudi Arabia. Date palm cultivation and productivity are severely affected by various fungal diseases in date palm-producing countries. In recent years, black scorch disease has emerged as a devastating disease affecting date palm cultivation in the Arabian Peninsula. In the current survey, leaves and root samples were collected from deteriorated date palm trees showing variable symptoms of neck bending, leaf drying, tissue necrosis, wilting, and mortality of the entire tree in the Al-Ahsa region of Saudi Arabia. During microscopic examination, the fungus isolates growing on potato dextrose agar (PDA) media produced thick-walled chlamydospores and endoconidia. The morphological characterization confirmed the presence of Thielaviopsis punctulata in the date palm plant samples as the potential agent of black scorch disease. The results were further confirmed by polymerase chain reaction (PCR), sequencing, and phylogenetic dendrograms of partial regions of the ITS, TEF1-α, and ß-tubulin genes. The nucleotide sequence comparison showed that the T. punctulata isolates were 99.9-100% identical to each other and to the T. punctulata isolate identified from Iraq-infecting date palm trees. The pathogenicity of the three selected T. punctulata isolates was also confirmed on date palm plants of Khalas cultivar. The morphological, molecular, and pathogenicity results confirmed that T. punctulata causes black scorch disease in symptomatic date palm plants in Saudi Arabia. Furthermore, seven commercially available fungicides were also tested for their potential efficacy to control black scorch disease. The in vitro application of the three fungicides Aliette, Score, and Tachigazole reduced the fungal growth zone by 86-100%, respectively, whereas the in vivo studies determined that the fungicides Aliette and Score significantly impeded the mycelial progression of T. punctulata with 40% and 73% efficiency, respectively. These fungicides can be used in integrated disease management (IDM) strategies to curb black scorch disease.

5.
Front Plant Sci ; 13: 1047410, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36733604

RESUMO

Medicinal plants, an important source of herbal medicine, are gaining more demand with the growing human needs in recent times. However, these medicinal plants have been recognized as one of the possible sources of heavy metal toxicity in humans as these medicinal plants are exposed to cadmium-rich soil and water because of extensive industrial and agricultural operations. Cadmium (Cd) is an extremely hazardous metal that has a deleterious impact on plant development and productivity. These plants uptake Cd by symplastic, apoplastic, or via specialized transporters such as HMA, MTPs, NRAMP, ZIP, and ZRT-IRT-like proteins. Cd exerts its effect by producing reactive oxygen species (ROS) and interfere with a range of metabolic and physiological pathways. Studies have shown that it has detrimental effects on various plant growth stages like germination, vegetative and reproductive stages by analyzing the anatomical, morphological and biochemical changes (changes in photosynthetic machinery and membrane permeability). Also, plants respond to Cd toxicity by using various enzymatic and non-enzymatic antioxidant systems. Furthermore, the ROS generated due to the heavy metal stress alters the genes that are actively involved in signal transduction. Thus, the biosynthetic pathway of the important secondary metabolite is altered thereby affecting the synthesis of secondary metabolites either by enhancing or suppressing the metabolite production. The present review discusses the abundance of Cd and its incorporation, accumulation and translocation by plants, phytotoxic implications, and morphological, physiological, biochemical and molecular responses of medicinal plants to Cd toxicity. It explains the Cd detoxification mechanisms exhibited by the medicinal plants and further discusses the omics and biotechnological strategies such as genetic engineering and gene editing CRISPR- Cas 9 approach to ameliorate the Cd stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...