Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 251: 121127, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38237460

RESUMO

Membrane distillation (MD) scale-up is challenged by ineffective heat recovery and the temperature polarization effect. Direct contact membrane distillation (DCMD) modules suffer high thermal conduction losses due to feed flow direction along the length of the membrane, resulting in low thermal efficiency. We propose a novel module design named coiled hollow fiber (CHF) to decouple the flow direction from the membrane surface in hollow fiber (HF) DCMD. Experimental and computational analyses were employed to compare the performance of CHF and the conventional design. The CHF module design successfully mitigates the TP effect in HF DCMD, increasing the flux by 148 % and 163 % in cross-flow and localized heating (LH) modes, respectively. Moreover, CHF operated in LH mode exhibits the lowest energy consumption of all configurations (81 % decrease) compared to the conventional design. This novel module design represents a new pathway for efficient and highly performing DCMD module.


Assuntos
Destilação , Purificação da Água , Temperatura , Destilação/métodos , Membranas Artificiais , Polivinil , Temperatura Alta , Purificação da Água/métodos
2.
ACS Appl Mater Interfaces ; 15(25): 31067-31076, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37310755

RESUMO

In spite of massive progress in oil-water separation, attributable to the use of advanced materials, the separation process faces challenges such as low permeance and fouling problems. Therefore, superwettable materials used in several fields are considered potential candidates for oily wastewater treatment. Metal-organic frameworks (MOFs) are receiving more and more interest in various separation applications due to their wide potential applications. Nevertheless, MOFs have been rarely explored for separating stabilized oil-in-water emulsions due to the difficulty in finding highly hydrolytic stable MOF candidates for this application. Furthermore, oil can clog water-stable materials owing to its high density, causing the degradation of MOF particles. As a result, there is a need to develop better MOF materials that can fulfill these requirements. Herein, we have explored Cr-soc-MOF-1 as a candidate for this application and deployed it as a membrane, which exhibited superhydrophilicity and underwater superoleophobicity for separating stabilized oil-in-water emulsions. The Cr-soc-MOF-1 membranes were synthesized by assembling the as-prepared MOF particles on a mixed cellulose ester substrate using a vacuum-assisted self-assembly technique. The Cr-soc-MOF-1 membrane exhibited ultrahigh water permeance (7465.9 L·m-2·h-1·bar-1), very high oil rejection (99.9%), and excellent anti-oil-fouling properties. The Cr-soc-MOF-1 membranes also exhibited excellent recyclability over 10 continuous separation cycles. Further, they exhibited an outstanding performance in separating various surfactant-stabilized oil-in-water emulsions. Thus, the Cr-soc-MOF-1 membranes exhibit a high potential in treating oily wastewater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...