Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(7): e0305358, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008492

RESUMO

BACKGROUND: Huntington's disease (HD) is an extremely harmful autosomal inherited neurodegenerative disease. Motor dysfunction, mental disorder, and cognitive deficits are the characteristic features of this disease. The current study examined whether 6-shogaol has a protective effect against 3-Nitropropionic Acid (3-NPA)-induced HD in rats. METHODS: A total of thirty male Wistar rats received 6-shogaol (10 and 20 mg/kg, per oral) an hour before injection of 3-NPA (10 mg/kg i.p.) for 15 days. Behavioral tests were performed, including narrow beam walk, rotarod test, and grip strength test. Biochemical tests promoting oxidative stress were evaluated [superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT) and malondialdehyde (MDA)], including changes to neurotransmitters serotonin (5-HT), dopamine (DA), norepinephrine (NE), homovanillic acid (HVA), (3,4-dihydroxyphenylacetic acid (DOPAC), γ-aminobutyric acid (GABA), and 5-hydroxy indole acetic acid (5-HIAA), nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNF-α), interleukins-1ß (IL-1ß), IL-6, brain-derived neurotrophic factor (BDNF), and nuclear factor erythroid 2-related factor 2 (Nrf2). The 6-shogaol was docked to the active site of TNF-α (2AZ5), NF-κB (1SVC), BDNF) [1B8M], and Nrf2 [5FZN] proteins using AutoDock tools. RESULTS: The 6-shogaol group significantly improved behavioral activity over the 3-NPA-injected control rats. Moreover, 3-NPA-induced significantly altered neurotransmitters, biochemical and neuroinflammatory indices, which could efficiently be reversed by 6-shogaol. The 6-shogaol showed favorable negative binding energies at -9.271 (BDNF) kcal/mol. CONCLUSIONS: The present investigation demonstrated the neuroprotective effects of 6-shogaol in an experimental animal paradigm against 3-NPA-induced HD in rats. The suggested mechanism is supported by immunohistochemical analysis and western blots, although more research is necessary for definite confirmation.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Catecóis , Citocinas , Doença de Huntington , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2 , NF-kappa B , Nitrocompostos , Propionatos , Ratos Wistar , Animais , Doença de Huntington/metabolismo , Doença de Huntington/induzido quimicamente , Doença de Huntington/tratamento farmacológico , Propionatos/farmacologia , Masculino , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ratos , NF-kappa B/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Catecóis/farmacologia , Catecóis/química , Citocinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-38956913

RESUMO

BACKGROUND: Gliomas are the most frequent, heterogeneous group of tumors arising from glial cells, characterized by difficult monitoring, poor prognosis, and fatality. Tissue biopsy is an established procedure for tumor cell sampling that aids diagnosis, tumor grading, and prediction of prognosis. MATERIALS AND METHODS: We studied and compared the levels of liquid biopsy markers in patients with different grades of glioma. Also, we tried to prove the potential association between glioma and specific blood group antigens. RESULTS: 78 patients were found, among whom the maximum percentage with glioblastoma had blood group O+ (53.8%). The second highest frequency had blood group A+ (20.4%), followed by B+ (9.0%) and A- (5.1%), and the least with O-. Liquid biopsy biomarkers included Alanine Aminotransferase (ALT), Lactate Dehydrogenase (LDH), lymphocytes, Urea, Alkaline phosphatase (AST), Neutrophils, and C-Reactive Protein (CRP). The levels of all the components increased significantly with the severity of the glioma, with maximum levels seen in glioblastoma (grade IV), followed by grade III and grade II, respectively. CONCLUSION: Gliomas have significant clinical challenges due to their progression with heterogeneous nature and aggressive behavior. A liquid biopsy is a non-invasive approach that aids in setting up the status of the patient and figuring out the tumor grade; therefore, it may show diagnostic and prognostic utility. Additionally, our study provides evidence to prove the role of ABO blood group antigens in the development of glioma. However, future clinical research on liquid biopsy will improve the sensitivity and specificity of these tests and confirm their clinical usefulness to guide treatment approaches.

.

3.
Curr Med Chem ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38939996

RESUMO

BACKGROUND: Methamphetamine (MA) is well recognized as a psychostimulant that can cause neurotoxicity and neurodegeneration, which is associated with cognitive decline, has been confirmed experimentally. OBJECTIVE: The research aimed to investigate the neuroprotective properties of europinidin (Eu) in rodents affected by methamphetamine (MA)-induced cognitive impairments and hippocampal alterations. This was achieved by inhibiting lipid peroxidation and pro-inflammatory markers. METHODS: Rats were exposed to cognitive impairment produced by MA. The Morris water maze (MWM) is utilized for evaluating behavioral parameters. Tests were conducted on malondialdehyde (MDA), catalase (CAT), interleukins-1ß (IL-1ß), reduced glutathione (GSH), tumor necrosis factor-α (TNF-α), superoxide dismutase (SOD), and the expression of neurotransmitters (Norepinephrine [NE], dopamine [DA], glutamate, and gamma-aminobutyric acid [GABA]) as well as cAMP response element-binding protein (CREB), IL-6, brain-derived neurotrophic factor (BDNF), and caspase 3 proteins. An investigation was carried out using docking methodology to ascertain whether Eu interacts with relevant molecular targets. RESULTS: Significant decline in the transfer latency and there were significant changes in the amount of SOD, GSH, CAT, and MDA and alterations in levels of IL-6, IL-1ß, CREB, TNF-α, BDNF, and Caspase 3 proteins expression, as well as considerably alterations in level of neurotransmitters (NE, DA, Glutamate, and GABA) were observed in the Eu-treated rats compared to the MA-induced rats. Eu had a favorable affinity towards BDNF with docking scores of -9.486 kcal/mol. CONCLUSION: The experiment found that administering Eu to rats improved cognitive abilities by changing antioxidant enzymes, reducing cytokines, and modifying neurotransmitter levels, compared to rats in the control group treated with MA.

4.
Int J Biochem Cell Biol ; 171: 106582, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38649007

RESUMO

DNA methylation is one of the most important epigenetic mark involved in many physiologic cellular processes and pathologies. During mitosis, the transmission of DNA methylation patterns from a mother to the daughter cells is ensured through the action of the Ubiquitin-like, containing PHD and RING domains, 1/DNA methyltransferase 1 (UHRF1/DNMT1) tandem. UHRF1 is involved in the silencing of many tumor suppressor genes (TSGs) via mechanisms that remain largely to be deciphered. The present study investigated the role and the regulation of UHRF1 poly-ubiquitination induced by thymoquinone, a natural anti-cancer drug, known to enhance or re-activate the expression of TSGs. We found that the auto-ubiquitination of UHRF1, induced by TQ, is mediated by reactive oxygen species, and occurs following DNA damage. We demonstrated that the poly-ubiquitinated form of UHRF1 is K63-linked and can still silence the tumor suppressor gene p16INK4A/CDKN2A. We further showed that TQ-induced auto-ubiquitination is mediated via the activity of Tip60. Since this latter is known as a nuclear receptor co-factor, we investigated if the glucocorticoid receptor (GR) might be involved in the regulation of UHRF1 ubiquitination. Activation of the GR, with dexamethasone, did not influence auto-ubiquitination of UHRF1. However, we could observe that TQ induced a K48-linked poly-ubiquitination of GR, probably involved in the proteosomal degradation pathway. Mass-spectrometry analysis of FLAG-HA-tagged UHRF1 identified UHRF1 partners involved in DNA repair and showed that TQ increased their association with UHRF1, suggesting that poly-ubiquitination of UHRF1 is involved in the DNA repair process. We propose that poly-ubiquitination of UHRF1 serves as a scaffold to recruit the DNA repair machinery at DNA damage sites.


Assuntos
Benzoquinonas , Proteínas Estimuladoras de Ligação a CCAAT , Reparo do DNA , Ubiquitina-Proteína Ligases , Ubiquitinação , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Ubiquitinação/efeitos dos fármacos , Benzoquinonas/farmacologia , Reparo do DNA/efeitos dos fármacos , Antineoplásicos/farmacologia , Dano ao DNA/efeitos dos fármacos
5.
Int Immunopharmacol ; 130: 111732, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38402834

RESUMO

Fulminant hepatic failure (FHF) is the terminal phase of acute liver injury, which is characterized by massive hepatocyte necrosis and rapid hepatic dysfunction in patients without preexisting liver disease. There are currently no therapeutic options for such a life-threatening hepatic failure except liver transplantation; therefore, the terminal phase of the underlying acute liver injury should be avoided. Tomatidine (TOM), asteroidal alkaloid, may have different biological activities, including antioxidant and anti-inflammatory effects. Herein, the lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced FHF mouse model was established to explore the protective potential of TOM and the underlying mechanisms of action. TOM pretreatment significantly inhibited hepatocyte necrosis and decreased serum aminotransferase activities in LPS/D-GalN-stimulated mice. TOM further increased the level of different antioxidant enzymes while reducing lipid peroxidation biomarkers in the liver. These beneficial effects of TOM were shown to be associated with targeting of NF-κB signaling pathways, where TOM repressed NF-κB activation and decreased LPS/D-GalN-induced TNF-α, IL-6, IL-1ß, and iNOS production. Moreover, TOM prevented LPS/D-GalN-induced upregulation of Keap1 expression and downregulation of Nrf2 and HO-1 expression, leading to increased Nrf2-binding activity and HO-1 levels. Besides, TOM pretreatment repressed LPS/D-GalN-induced upregulation of proliferating cell nuclear antigen (PCNA) expression, which spared the hepatocytes from damage and subsequent repair following the LPS/D-GalN challenge. Collectively, our findings revealed that TOM has a protective effect on LPS/D-GalN-induced FHF in mice, showing powerful antioxidant and anti-inflammatory effects, primarily mediated via modulating Keap1/Nrf2/HO-1 and NF-κB/TNF-α/IL-6/IL-1ß/iNOS signaling pathways.


Assuntos
Falência Hepática Aguda , NF-kappa B , Tomatina/análogos & derivados , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Antioxidantes/farmacologia , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/tratamento farmacológico , Falência Hepática Aguda/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Lipopolissacarídeos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Transdução de Sinais , Fígado , Estresse Oxidativo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Necrose/metabolismo , Galactosamina/farmacologia
6.
J Biomol Struct Dyn ; : 1-14, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38260958

RESUMO

We designed a highly sensitive fluorescent sensor for the early detection of sarcosine, a potential biomarker for prostate cancer. This sensor was based on surface-cobalt-doped fluorescent carbon quantum dots (Co-CD) using a FRET-based photoluminescent sensing platform. Blue luminescent carbon quantum dots (CQD) were synthesised through a hydrothermal approach, utilizing Delonix regia tree pod shells. Cobalt was employed to functionalize the CQD, enhancing the quantum-entrapped effects and minimizing surface flaws. To optimize Co-CD preparation, we employed a Box-Behnken design (BBD), and response surface methodology (RSM) based on single-factor experiments. The Co-CD was then used as a fluorescent probe for selective Cu2+ detection, with Cu2+ quenching Co-CD fluorescence through an energy transfer process, referred to as 'turn-off'. When sarcosine was introduced, the fluorescence intensity of Co-CD was restored, creating a 'turn-on' response. The sensor exhibited a Cu2+ detection limit (LOD) of 2.4 µM with a linear range of 0 µM to 10 µM. The sarcosine detection in phosphate buffer saline (PBS, pH 7.4) resulted in an LOD of 1.54 µM and a linear range of 0 to 10 µM. Importantly, the sensor demonstrated its suitability for clinical analysis by detecting sarcosine in human urine. In summary, our rapid and highly sensitive sensor offers a novel approach for the detection of sarcosine in real samples, facilitating early prostate cancer diagnosis.Communicated by Ramaswamy H. Sarma.

7.
Food Funct ; 13(1): 316-326, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34897340

RESUMO

Maritime pine bark is a rich source of polyphenolic compounds and is commonly employed as a herbal supplement worldwide. This study was designed to check the potential of maritime pine tannin extract (MPTE) in anticancer therapy and to determine the underlying mechanism of action. Our results showed that MPTE, containing procyanidin oligomers and lanostane type terpenoids, has an inhibitory effect on cancer cell proliferation through cell cycle arrest in the G2/M phase. Treatment with MPTE also induced apoptosis in a concentration-dependent manner in human cancer cell lines (HeLa and U2OS), as evidenced by the enhanced activation of caspase 3 and the cleavage of PARP along with the downregulation of the antiapoptotic protein Bcl-2. Interestingly, human non-cancerous fibroblasts are much less sensitive to MPTE, suggesting that it preferentially targets cancer cells. MPTE played a pro-oxidant role in cancer cells and promoted the expression of the p73 tumor suppressor gene in p53-deficient cells. It also downregulated the protooncogenic proteins UHRF1 and DNMT1, mediators of the DNA methylation machinery, and reduced the global methylation levels in HeLa cells. Overall, our results show that maritime pine tannin extract can play a favorable role in cancer treatment, and can be further explored by the pharmaceutical industry.


Assuntos
Antineoplásicos/farmacologia , Proteínas Estimuladoras de Ligação a CCAAT , Epigênese Genética/efeitos dos fármacos , Pinus/química , Taninos/farmacologia , Ubiquitina-Proteína Ligases , Apoptose/efeitos dos fármacos , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Regulação para Baixo/efeitos dos fármacos , Células HeLa , Humanos , Casca de Planta/química , Extratos Vegetais/farmacologia , Proteína Tumoral p73/genética , Proteína Tumoral p73/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...