Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Cent Sci ; 10(1): 43-53, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38292602

RESUMO

One of the most effective approaches to optimizing the performance of perovskite solar cells is to fully understand the ultrafast carrier dynamics at the interfaces between absorber and transporting layers at both the molecular and atomic levels. Here, the injection dynamics of hot and relaxed charge carriers at the interface between the hybrid perovskite, formamidinium lead bromide (FAPbBr3), and the organic electron acceptor, IEICO-4F, are investigated and deciphered by using femtosecond (fs) mid-infrared (IR), transient absorption (TA), and fluorescence spectroscopies. The visible femtosecond-TA measurements reveal the generation of hot carriers and their transition to free carriers in the pure FAPbBr3 film. Meanwhile, the efficient extraction of hot carriers in the mixed FAPbBr3/IEICO-4F film is clearly evidenced by the complete disappearance of their spectral signature. More specifically, the time-resolved results reveal that hot carriers are injected from FAPbBr3 to IEICO-4F within 150 fs, while the transfer time for the relaxed carriers is about 205 fs. The time-resolved mid-IR experiments also demonstrate the ultrafast formation of two peaks at 2115 and 2233 cm-1, which can be attributed to the C≡N symmetrical and asymmetrical vibrational modes of anionic IEICO-4F, thus providing crystal clear evidence for the electron transfer process between the donor and acceptor units. Moreover, photoluminescence (PL) lifetime measurements reveal an approximately 10-fold decrease in the donor lifetime in the presence of IEICO-4F, thereby confirming the efficient electron injection from the perovskite to the acceptor unit. In addition, the efficient electron injection at the FAPbBr3/IEICO-4F interface and its impact on the C≡N bond character are experimentally evidenced and align with density functional theory (DFT) calculations. This work offers new insights into the electron injection process at the FAPbBr3/IEICO-4F interface, which is crucial for developing efficient optoelectronic devices.

2.
Adv Mater ; 34(47): e2202390, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36069995

RESUMO

Single-crystal halide perovskites exhibit photogenerated-carriers of high mobility and long lifetime, making them excellent candidates for applications demanding thick semiconductors, such as ionizing radiation detectors, nuclear batteries, and concentrated photovoltaics. However, charge collection depreciates with increasing thickness; therefore, tens to hundreds of volts of external bias is required to extract charges from a thick perovskite layer, leading to a considerable amount of dark current and fast degradation of perovskite absorbers. However, extending the carrier-diffusion length can mitigate many of the anticipated issues preventing the practical utilization of perovskites in the abovementioned applications. Here, single-crystal perovskite solar cells that are up to 400 times thicker than state-of-the-art perovskite polycrystalline films are fabricated, yet retain high charge-collection efficiency in the absence of an external bias. Cells with thicknesses of 110, 214, and 290 µm display power conversion efficiencies (PCEs) of 20.0, 18.4, and 14.7%, respectively. The remarkable persistence of high PCEs, despite the increase in thickness, is a result of a long electron-diffusion length in those cells, which was estimated, from the thickness-dependent short-circuit current, to be ≈0.45 mm under 1 sun illumination. These results pave the way for adapting perovskite devices to optoelectronic applications in which a thick active layer is essential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...