Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37571123

RESUMO

A thermomechanical model of the friction stir welding (FSW) of high-density polyethylene (HDPE) was developed by incorporating a Coupled Eulerian-Lagrangian (CEL) approach. A Johnson Cook (JC) material model of HDPE was developed through experimentally generated strain-rate- and temperature-dependent stress strain data. Two sets of FSW process parameters with minimum and maximum weld defects were numerically modeled. The numerically calculated temperature distribution, material flow and flash and potential defects were validated and discussed with the experimental results. Tracer particles allowed to visualize the material movement during and after the tool had traversed from the specified region of the workpiece. Both numerical models presented similar maximum temperatures on the upper surface of the workpiece, while the model with high traverse speed and slow rotational speed had narrower shoulder- and heat-affected zones than the slow traverse, high rotational speed model. This contributed to the lack of material flow, hence the development of voids and worm holes in the high traverse speed model. Flash and weld defects were observed in models for both sets of process parameters. However, slow traverse, high rotational speeds exhibited smaller and lesser weld defects than high traverse, slow rotational speeds. The numerical results based on the CEL approach and JC material model were found to be in good agreement with the experimental results.

2.
Polymers (Basel) ; 15(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38231958

RESUMO

Friction stir lap welding (FSLW) remains a pioneering technique for creating hybrid joints between AA5052 aluminium alloy and polypropylene (PP), particularly with the metal-on-top configuration. Building upon previous research, this study introduces a tapered fluted pin tool design and investigates its effectiveness in the welding process. Our results, supported by ANOVA, chemical, and microstructural analyses, reiterate that the optimal welding parameters stand at a rotational speed of 1400 RPM and a traverse speed of 20 mm/min. This combination produces a joint tensile strength of 3.8 MPa, signifying 16.54% of the weaker material's inherent strength. Microstructural evaluations revealed a unique composite of aluminium chips intermeshed with PP, strengthened further by aluminium hooks. Crucially, mechanical interlocking plays a predominant role over chemical bonding in achieving this joint strength. The study underscores the absence of significant C-O-Al bonds, hinting at the PP degradation without the thermo-oxidation process. Additionally, joint strength was found to inversely correlate with the interaction layer's thickness. The findings fortify the promise of FSLW with the novel fluted pin design for enhancing joints between AA5052 and PP, emphasising the potential of mechanical interlocking as a principal factor in achieving high-quality welds.

3.
Polymers (Basel) ; 14(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36501492

RESUMO

Modern aircrafts require the assembly of thousands of components with high accuracy and reliability. The normality of drilled holes is a critical geometrical tolerance that is required to be achieved in order to realize an efficient assembly process. Failure to achieve the required tolerance leads to structures prone to fatigue problems and assembly errors. Elastomer-based tactile sensors have been used to support robots in acquiring useful physical interaction information with the environments. However, current tactile sensors have not yet been developed to support robotic machining in achieving the tight tolerances of aerospace structures. In this paper, a novel elastomer-based tactile sensor was developed for cobot machining. Three commercial silicon-based elastomer materials were characterised using mechanical testing in order to select a material with the best deformability. A Finite element model was developed to simulate the deformation of the tactile sensor upon interacting with surfaces with different normalities. Additive manufacturing was employed to fabricate the tactile sensor mould, which was chemically etched to improve the surface quality. The tactile sensor was obtained by directly casting and curing the optimum elastomer material onto the additively manufactured mould. A machine learning approach was used to train the simulated and experimental data obtained from the sensor. The capability of the developed vision tactile sensor was evaluated using real-world experiments with various inclination angles, and achieved a mean perpendicularity tolerance of 0.34°. The developed sensor opens a new perspective on low-cost precision cobot machining.

4.
Polymers (Basel) ; 13(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33918015

RESUMO

Friction stir welding (FSW) and friction stir spot welding (FSSW) techniques are becoming widely popular joining techniques because of their increasing potential applications in automotive, aerospace, and other structural industries. These techniques have not only successfully joined similar and dissimilar metal and polymer parts but have also successfully developed polymer-metallic hybrid joints. This study classifies the literature available on the FSW and FSSW of thermoplastic polymers and polymer composites on the basis of joining materials (similar or dissimilar), joint configurations, tooling conditions, medium conditions, and study types. It provides a state-of-the-art and detailed review of the experimental studies available on the FSW and FSSW between similar thermoplastics. The mechanical properties of FSW (butt- and lap-joint configurations) and FSSW weld joints depend on various factors. These factors include the welding process parameters (tool rotational speed, tool traverse speed, tool tilt angle, etc.), base material, tool geometry (pin and shoulder size, pin profile, etc.) and tool material, and medium conditions (submerged, non-submerged, heat-assisted tooling, cooling-assisted tooling). Because of the dependence on many factors, it is difficult to optimize the welding conditions to obtain a high-quality weld joint with superior mechanical properties. The general guidelines are established by reviewing the available literature. These guidelines, if followed, will help to achieve high-quality weld joints with least defects and superior mechanical properties. Apart from parametric-based studies, the statistical-based studies (e.g., analysis of variance (ANOVA)-based studies) are covered, which helps with the determination of the influential parameters that affect the FSW and FSSW weld joint strength. Also, the optimal ranges of the most influential process parameters for different thermoplastic materials are established. The current work on the development of general guidelines and determination of influential parameters and their operating ranges from published literature can help with designing smart future experimental studies for obtaining the global optimum welding conditions. The gaps in the available literature and recommendations for future studies are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...