Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Phys J E Soft Matter ; 15(4): 359-70, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15647894

RESUMO

The structure and dynamics of a strongly asymmetric poly(ethylene propylene)-poly(dimethylsiloxane) (PEP-PDMS) diblock copolymer in the melt have been studied over a wide temperature range. Small-angle neutron scattering reveals that the sample exhibits two stable phases in this temperature range: Above the order-to-disorder transition temperature, it is disordered, whereas the domain structure is body-centered cubic (bcc) below, being stable down to the lowest temperatures measured. In the disordered state, dynamic light scattering (DLS) in the polarized geometry reveals the heterogeneity mode and the cluster mode. In the bcc phase, the PEP and the PDMS blocks form the micellar cores and the matrix, respectively. Here, two modes are observed in DLS, and the diffusion coefficients measured using pulsed field gradient (PFG) NMR are broadly distributed with the most probable diffusion coefficient coinciding with the slow DLS mode. We attribute the fast process in the bcc state to concentration fluctuations of the micellar cores (PEP), relaxing by mutual diffusion of the micelles with copolymers dissolved in the PDMS matrix. The slower process in the bcc state is ascribed to activated long-range self-diffusion of single copolymers from micelle to micelle through the PDMS matrix. This assignment is corroborated by the good coincidence of the reduced diffusivities with the ones from the literature. However, this mode may also be assigned to the rearrangement of entire micelles.

2.
Phys Rev Lett ; 87(9): 098301, 2001 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-11531601

RESUMO

Bicontinuous microemulsions arise in a narrow concentration range for ternary blends containing two immiscible homopolymers and the corresponding diblock copolymer. Steady shear reveals four distinct regimes of response as a function of shear rate, corresponding to flow-induced transitions in fluid structure. In situ neutron scattering shows flow-induced anisotropy in the nanometer-scale microemulsion structure at moderate shear rates, while higher rates induce bulk phase separation, with micron-size morphology, which is characterized with in situ light scattering and optical microscopy.

4.
6.
Phys Rev Lett ; 68(16): 2452-2455, 1992 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-10045401
7.
Phys Rev Lett ; 65(9): 1112-1115, 1990 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-10043108
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...