Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Eur J Hum Genet ; 31(10): 1108-1116, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37433892

RESUMO

Niemann-Pick type C1 disease (NPC1 [OMIM 257220]) is a rare and severe autosomal recessive disorder, characterized by a multitude of neurovisceral clinical manifestations and a fatal outcome with no effective treatment to date. Aiming to gain insights into the genetic aspects of the disease, clinical, genetic, and biomarker PPCS data from 602 patients referred from 47 countries and diagnosed with NPC1 in our laboratory were analyzed. Patients' clinical data were dissected using Human Phenotype Ontology (HPO) terms, and genotype-phenotype analysis was performed. The median age at diagnosis was 10.6 years (range 0-64.5 years), with 287 unique pathogenic/likely pathogenic (P/LP) variants identified, expanding NPC1 allelic heterogeneity. Importantly, 73 P/LP variants were previously unpublished. The most frequent variants detected were: c.3019C > G, p.(P1007A), c.3104C > T, p.(A1035V), and c.2861C > T, p.(S954L). Loss of function (LoF) variants were significantly associated with earlier age at diagnosis, highly increased biomarker levels, and a visceral phenotype (abnormal abdomen and liver morphology). On the other hand, the variants p.(P1007A) and p.(S954L) were significantly associated with later age at diagnosis (p < 0.001) and mildly elevated biomarker levels (p ≤ 0.002), consistent with the juvenile/adult form of NPC1. In addition, p.(I1061T), p.(S954L), and p.(A1035V) were associated with abnormality of eye movements (vertical supranuclear gaze palsy, p ≤ 0.05). We describe the largest and most heterogenous cohort of NPC1 patients published to date. Our results suggest that besides its utility in variant classification, the biomarker PPCS might serve to indicate disease severity/progression. In addition, we establish new genotype-phenotype relationships for "frequent" NPC1 variants.


Assuntos
Fenótipo , Adulto , Humanos , Recém-Nascido , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Pessoa de Meia-Idade
2.
Eur J Hum Genet ; 30(9): 1029-1035, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35614200

RESUMO

To present our experience using a multiomic approach, which integrates genetic and biochemical testing as a first-line diagnostic tool for patients with inherited metabolic disorders (IMDs). A cohort of 3720 patients from 62 countries was tested using a panel including 206 genes with single nucleotide and copy number variant (SNV/CNV) detection, followed by semi-automatic variant filtering and reflex biochemical testing (25 assays). In 1389 patients (37%), a genetic diagnosis was achieved. Within this cohort, the highest diagnostic yield was obtained for patients from Asia (57.5%, mainly from Pakistan). Overall, 701 pathogenic/likely pathogenic unique SNVs and 40 CNVs were identified. In 620 patients, the result of the biochemical tests guided variant classification and reporting. Top five diagnosed diseases were: Gaucher disease, Niemann-Pick disease type A/B, phenylketonuria, mucopolysaccharidosis type I, and Wilson disease. We show that integrated genetic and biochemical testing facilitated the decision on clinical relevance of the variants and led to a high diagnostic yield (37%), which is comparable to exome/genome sequencing. More importantly, up to 43% of these patients (n = 610) could benefit from medical treatments (e.g., enzyme replacement therapy). This multiomic approach constitutes a unique and highly effective tool for the genetic diagnosis of IMDs.


Assuntos
Variações do Número de Cópias de DNA , Doenças Metabólicas , Exoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Doenças Metabólicas/diagnóstico , Doenças Metabólicas/genética , Paquistão , Sequenciamento do Exoma
3.
Muscle Nerve ; 56(5): 868-872, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28128857

RESUMO

INTRODUCTION: Mitochondrial disorders display remarkable genetic and phenotypic heterogeneity. METHODS: We performed a retrospective analysis of the clinical, histological, biochemical, and genetic features of 65 patients with molecular diagnoses of mitochondrial disorders. RESULTS: The most common genetic diagnosis was a single large-scale mitochondrial DNA (mtDNA) deletion (41.5%), and the most frequent clinical phenotype was chronic progressive external ophthalmoplegia (CPEO). It occurred in 41.5% of all patients, primarily in those with mtDNA deletions. Histological signs of mitochondrial dysfunction were found in 73.8% of patients, and respiratory chain enzyme assay (RCEA) abnormalities were detected in 51.9%. CONCLUSIONS: This study confirms the high relative frequency of single large-scale deletions among mitochondrial disorders as well as its particular association with CPEO. Muscle histology seems to be particularly useful in older patients and those with mtDNA deletions, whereas RCEA might be more helpful in young children or individuals with mtDNA depletion. Muscle Nerve 56: 868-872, 2017.


Assuntos
DNA Mitocondrial/genética , Doenças Mitocondriais , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Músculo Esquelético/patologia , Deleção de Sequência/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Oftalmoplegia Externa Progressiva Crônica/genética , Portugal , Adulto Jovem
4.
JIMD Rep ; 23: 55-65, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25814383

RESUMO

Carriers of cytogenetically similar, apparently balanced familial chromosome translocations not always exhibit the putative translocation-associated disease phenotype. Additional genetic defects, such as genomic imbalance at breakpoint regions or elsewhere in the genome, have been reported as the most plausible explanation.By means of comprehensive molecular and functional analyses, additional to careful dissection of the t(3;14)(q26.33;q12) breakpoints, we unveil a novel X-linked PGK1 mutation and examine the contribution of these to the extremely severe clinical phenotype characterized by hemolytic anemia and neuromyopathy.The 3q26.33 breakpoint is 40 kb from the 5' region of tetratricopeptide repeat domain 14 gene (TTC14), whereas the 14q12 breakpoint is within IVS6 of nucleotide-binding protein-like gene (NUBPL) that encodes a mitochondrial complex I assembly factor. Disruption of NUBPL in translocation carriers leads to a decrease in the corresponding mRNA accompanied by a decrease in protein level. Exclusion of pathogenic genomic imbalance and reassessment of familial clinical history indicate the existence of an additional causal genetic defect. Consequently, by WES a novel mutation, c.358G>A, p.E120K, in the X-linked phosphoglycerate kinase 1 (PGK1) was identified that segregates with the phenotype. Specific activity, kinetic properties, and thermal stability of this enzyme variant were severely affected. The novel PGK1 mutation is the primary genetic alteration underlying the reported phenotype as the translocation per se only results in a subclinical phenotype. Nevertheless, its co-inheritance presumably exacerbates PGK1-deficient phenotype, most likely due to a synergistic interaction of the affected genes both involved in cell energy supply.

5.
Ital J Pediatr ; 40: 34, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24708634

RESUMO

Mitochondrial dysfunction accounts for a large group of inherited metabolic disorders most of which are due to a dysfunctional mitochondrial respiratory chain (MRC) and, consequently, deficient energy production. MRC function depends on the coordinated expression of both nuclear (nDNA) and mitochondrial (mtDNA) genomes. Thus, mitochondrial diseases can be caused by genetic defects in either the mitochondrial or the nuclear genome, or in the cross-talk between the two. This impaired cross-talk gives rise to so-called nuclear-mitochondrial intergenomic communication disorders, which result in loss or instability of the mitochondrial genome and, in turn, impaired maintenance of qualitative and quantitative mtDNA integrity. In children, most MRC disorders are associated with nuclear gene defects rather than alterations in the mtDNA itself.The mitochondrial DNA depletion syndromes (MDSs) are a clinically heterogeneous group of disorders with an autosomal recessive pattern of transmission that have onset in infancy or early childhood and are characterized by a reduced number of copies of mtDNA in affected tissues and organs. The MDSs can be divided into least four clinical presentations: hepatocerebral, myopathic, encephalomyopathic and neurogastrointestinal. The focus of this review is to offer an overview of these syndromes, listing the clinical phenotypes, together with their relative frequency, mutational spectrum, and possible insights for improving diagnostic strategies.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Mutação , Humanos , Síndrome
6.
Gene ; 527(1): 366-70, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23791655

RESUMO

Trimethylaminuria (TMAu) or "fish odor syndrome" is a metabolic disorder characterized by the inability to convert malodorous dietarily-derived trimethylamine (TMA) to odorless TMA N-oxide by the flavin-containing monooxygenase 3 (FMO3). Affected individuals unable to complete this reaction exude a "fishy" body odor due to the secretion of TMA in their corporal fluids leading to a variety of psychosocial problems. Interindividual variability in the expression of FMO3 gene may affect drug and foreign chemical metabolism in the liver and other tissues. Therefore, it is important to screen for common TMAu mutations but also extend the search to other genetic variants in order to correlate genotype and disease-associated phenotypes. In this study, 25 Portuguese patients with phenotype suggestive of TMAu were evaluated for molecular screening of the FMO3 gene. Herein, we found 16 variants in the FMO3 coding region, some of which had not been previously documented (Gly38Trp, Asp232Val, Thr307Pro, Ser310Leu). Whenever common variants (Glu158Lys, Glu308Gly) were considered in combination a distinct pattern between the control population and patients was observed, mainly in what concerns the presence of Lys158 and Gly308 in homozygous state. Further studies are necessary to clarify the pathogenicity of novel variants identified in this study, as well as the effect of the common single nucleotide polymorphisms, which may play an important role in disease presentation and/or protective mechanism to xenobiotics drugs or environment.


Assuntos
Erros Inatos do Metabolismo/genética , Oxigenases/genética , Sequência de Aminoácidos , Criança , Pré-Escolar , Sequência Conservada , Feminino , Frequência do Gene , Estudos de Associação Genética , Genótipo , Humanos , Lactente , Masculino , Erros Inatos do Metabolismo/enzimologia , Metilaminas/urina , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Oxigenases/química , Fenótipo , Polimorfismo de Nucleotídeo Único , Portugal , Análise de Sequência de DNA
7.
Neuromuscul Disord ; 21(7): 483-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21550804

RESUMO

Diseases affecting mtDNA stability, termed nuclear-mitochondrial intergenomic communication disorders, are caused by a primary nuclear gene defect resulting in multiple mtDNA deletions. The aim of this study was to estimate the frequency of known etiologies and the spectrum of mutations in a cohort of 21 patients harboring multiple mtDNA deletions in skeletal muscle. We showed that 10 cases (48%) display mutations in POLG, including eight previously reported variants and two novel mutations (namely, p.Trp585X and p.Arg1081Gln). The novel mutations affect evolutionary conserved residues and were absent in a large set of control chromosomes. These findings expand the array of mutations associated with multiple rearranged mtDNA attributed to mutations in POLG. The relatively high diagnostic yield (about one in two cases) supports the notion that it is recommended to test POLG routinely in diagnostic laboratories whenever multiple mtDNA deletions are present, regardless of the age of onset of patients and their clinical phenotype.


Assuntos
DNA Mitocondrial/genética , DNA Polimerase Dirigida por DNA/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Deleção de Sequência , Adulto , Idoso , Criança , Pré-Escolar , DNA Polimerase gama , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
8.
Eur J Hum Genet ; 19(1): 56-63, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20717164

RESUMO

The X-linked creatine transporter defect is caused by mutations in the SLC6A8 gene. Until now, 66 synonymous and intronic variants in SLC6A8 were detected in our laboratory. To gain more insight in the effect of the detected variants, we applied five free web-based splice-site analysis tools to 25 published variants that were stratified as (non-)disease causing. All were correctly predicted to have no effect (n=18) or to cause erroneous splicing (n=7), with the exception of a pathogenic de novo 24 bp intronic deletion. Second, 41 unclassified variants, including 28 novel, were subjected to analysis by these tools. At least four splice-site analysis tools predicted that three of the variants would affect splicing as the mutations disrupted the canonical splice site. Urinary creatine/creatinine and brain MRS confirmed creatine transporter deficiency in five patients (four families), including one female. Another variant was predicted to moderately affect splicing by all five tools. However, transient transfection of a minigene containing the variant in a partial SLC6A8 segment showed no splicing errors, and thus was finally classified as non-disease causing. This study shows that splice tools are useful for the characterization of the majority of variants, but also illustrates that the actual effect can be misclassified in rare occasions. Therefore, further laboratory studies should be considered before final conclusions on the disease-causing nature are drawn. To provide an accessible database, the 109 currently known SLC6A8 variants, including 35 novel ones, are included in a newly developed LOVD DNA variation database.


Assuntos
Bases de Dados Genéticas , Variação Genética , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiência , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Sítios de Splice de RNA , Adolescente , Encefalopatias Metabólicas Congênitas/diagnóstico , Encefalopatias Metabólicas Congênitas/genética , Criança , Creatina/deficiência , Creatina/genética , Feminino , Humanos , Internet , Íntrons/genética , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/diagnóstico , Deficiência Intelectual Ligada ao Cromossomo X/genética , Mutação , Splicing de RNA
9.
Hum Genet ; 119(6): 604-10, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16738945

RESUMO

Mutations in the creatine transporter gene, SLC6A8 (MIM 30036), located in Xq28, have been found in families with X-linked mental retardation (XLMR) as well as in males with idiopathic mental retardation (MR). In order to estimate the frequency of such mutations in the MR population, a screening of 478 males with MR of unknown cause was undertaken. All 13 exons of SLC6A8 were sequenced using genomic DNA. Six novel potentially pathogenic mutations were identified that were not encountered in at least 588 male control chromosomes: two deletions (p.Asn336del, p.Ile347del) and a splice site alteration (c.1016+2C>T) are considered pathogenic based on the nature of the variant. A mutation (p.Arg391Trp) should be considered pathogenic owing to its localization in a highly conserved region. Two other missense variants (p.Lys4Arg, p.Gly26Arg) are not conserved but were not observed in over 300 male control chromosomes. Their pathogenicity is uncertain. A missense variant (p.Val182Met), was classified as a polymorphism based on a normal creatine/creatinine (Cr:Crn) ratio and cerebral creatine signal in proton magnetic resonance spectroscopy (H-MRS) in the patient. Furthermore, we found 14 novel intronic and neutral variants that were not encountered in at least 280 male control chromosomes and should be considered as unclassified variants. Our findings of a minimum of four pathogenic mutations and two potentially pathogenic mutations indicate that about 1% of males with MR of unknown etiology might have a SLC6A8 mutation. Thus, DNA sequence analysis and/or a Cr:Crn urine screen is warranted in any male with MR of unknown cause.


Assuntos
Substituição de Aminoácidos/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo , Deleção de Sequência , Sequência de Aminoácidos , Sequência de Bases , Humanos , Masculino
10.
Synapse ; 60(2): 118-23, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16715490

RESUMO

The guanidino compound creatine has been shown to occur throughout the brain affecting energy metabolism and mental performance and to act at central GABAA receptors as a partial agonist. Therefore, we examined the possibility that creatine may in fact represent a neuromodulator that is released in the brain in an action-potential dependent manner. To that end, we studied the uptake of [3H]creatine and its electrically evoked release from superfused rat brain slices as well as the evoked release of endogenously synthesized creatine. [3H]creatine was accumulated in neocortex slices in a Na+-dependent manner, consistent with the involvement of the Na+-dependent SLC6A8 creatine transporter. Most importantly, the electrically evoked release of [3H]creatine from neocortex slices (like that from caudate putamen and hippocampus slices) as well as the evoked release of endogenous (unlabeled) creatine was abolished when Ca2+ was omitted from the superfusion medium or in the presence of the Na+-channel blocker tetrodotoxin (TTX). Moreover, blockade of K+-channels by 4-aminopyridine (4-AP) strongly enhanced the electrically evoked release of [3H]creatine as well as that of endogenous creatine. These in vitro data indicate that creatine is not only synthesized and taken up by central neurons, but also released in an action-potential dependent (exocytotic) manner, providing strong evidence for its role as a neuromodulator in the brain.


Assuntos
Encéfalo/metabolismo , Creatina/metabolismo , Exocitose/fisiologia , Neurônios/metabolismo , Neurotransmissores/metabolismo , Transmissão Sináptica/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Cálcio/metabolismo , Creatina/farmacologia , Estimulação Elétrica , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Exocitose/efeitos dos fármacos , Agonistas GABAérgicos/metabolismo , Agonistas GABAérgicos/farmacologia , Agonistas de Receptores de GABA-A , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Wistar , Receptores de GABA-A/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/efeitos dos fármacos , Canais de Sódio/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Trítio
11.
Mol Genet Metab ; 82(3): 214-9, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15234334

RESUMO

In this study, measurements of guanidinoacetate (GAA) and creatine (Cr) in urine, plasma, and cerebrospinal fluid (CSF) were performed using stable isotope dilution gas chromatography-mass spectrometry. Both compounds were analyzed in a single analysis. Reference values were established for GAA and Cr. These values were age dependent. No differences with gender were observed. Eight guanidinoacetate methyltransferase (GAMT) deficient patients and eight creatine transporter SLC6A8 deficient patients were investigated. In urine, plasma, and CSF of GAMT deficient patients increased levels of GAA are present. The SLC6A8 deficient patients all show increased creatine/creatinine (Cr/Crn) ratio in urine demonstrating the importance of the Cr/Crn ratio as a pathognomonic marker of the SLC6A8 deficiency.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Creatina/metabolismo , Glicina/análogos & derivados , Proteínas de Membrana Transportadoras/deficiência , Metiltransferases/deficiência , Adolescente , Adulto , Fatores Etários , Idoso , Criança , Pré-Escolar , Creatina/sangue , Creatina/líquido cefalorraquidiano , Creatina/urina , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Glicina/sangue , Glicina/líquido cefalorraquidiano , Glicina/urina , Guanidinoacetato N-Metiltransferase , Humanos , Lactente , Masculino , Valores de Referência , Síndrome
12.
Am J Hum Genet ; 75(1): 97-105, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15154114

RESUMO

A novel X-linked mental retardation (XLMR) syndrome was recently identified, resulting from creatine deficiency in the brain caused by mutations in the creatine transporter gene, SLC6A8. We have studied the prevalence of SLC6A8 mutations in a panel of 290 patients with nonsyndromic XLMR archived by the European XLMR Consortium. The full-length open reading frame and splice sites of the SLC6A8 gene were investigated by DNA sequence analysis. Six pathogenic mutations, of which five were novel, were identified in a total of 288 patients with XLMR, showing a prevalence of at least 2.1% (6/288). The novel pathogenic mutations are a nonsense mutation (p.Y317X) and four missense mutations. Three missense mutations (p.G87R, p.P390L, and p.P554L) were concluded to be pathogenic on the basis of conservation, segregation, chemical properties of the residues involved, as well as the absence of these and any other missense mutation in 276 controls. For the p.C337W mutation, additional material was available to biochemically prove (i.e., by increased urinary creatine : creatinine ratio) pathogenicity. In addition, we found nine novel polymorphisms (IVS1+26G-->A, IVS7+37G-->A, IVS7+87A-->G, IVS7-35G-->A, IVS12-3C-->T, IVS2+88G-->C, IVS9-36G-->A, IVS12-82G-->C, and p.Y498) that were present in the XLMR panel and/or in the control panel. Two missense variants (p.V629I and p.M560V) that were not highly conserved and were not associated with increased creatine : creatinine ratio, one translational silent variant (p.L472), and 10 intervening sequence variants or untranslated region variants (IVS6+9C-->T, IVS7-151_152delGA, IVS7-99C-->A, IVS8-35G-->A, IVS8+28C-->T, IVS10-18C-->T, IVS11+21G-->A, IVS12+15C-->T, *207G-->C, IVS12+32C-->A) were found only in the XLMR panel but should be considered as unclassified variants or as a polymorphism (p.M560V). Our data indicate that the frequency of SLC6A8 mutations in the XLMR population is close to that of CGG expansions in FMR1, the gene responsible for fragile-X syndrome.


Assuntos
Cromossomos Humanos X/genética , Proteínas de Membrana Transportadoras/deficiência , Proteínas de Membrana Transportadoras/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Mutação/genética , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Sequência de Aminoácidos , Creatina/metabolismo , Análise Mutacional de DNA , Feminino , Ligação Genética/genética , Humanos , Masculino , Dados de Sequência Molecular , Linhagem , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores , Prevalência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...