Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Temperature (Austin) ; 10(1): 136-154, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187834

RESUMO

We identified the neural pathway of the hyperthermic response to TRPV1 antagonists. We showed that hyperthermia induced by i.v. AMG0347, AMG 517, or AMG8163 did not occur in rats with abdominal sensory nerves desensitized by pretreatment with a low i.p. dose of resiniferatoxin (RTX, TRPV1 agonist). However, neither bilateral vagotomy nor bilateral transection of the greater splanchnic nerve attenuated AMG0347-induced hyperthermia. Yet, this hyperthermia was attenuated by bilateral high cervical transection of the spinal dorsolateral funiculus (DLF). To explain the extra-splanchnic, spinal mediation of TRPV1 antagonist-induced hyperthermia, we proposed that abdominal signals that drive this hyperthermia originate in skeletal muscles - not viscera. If so, in order to prevent TRPV1 antagonist-induced hyperthermia, the desensitization caused by i.p. RTX should spread into the abdominal-wall muscles. Indeed, we found that the local hypoperfusion response to capsaicin (TRPV1 agonist) in the abdominal-wall muscles was absent in i.p. RTX-desensitized rats. We then showed that the most upstream (lateral parabrachial, LPB) and the most downstream (rostral raphe pallidus) nuclei of the intrabrain pathway that controls autonomic cold defenses are also required for the hyperthermic response to i.v. AMG0347. Injection of muscimol (inhibitor of neuronal activity) into the LPB or injection of glycine (inhibitory neurotransmitter) into the raphe blocked the hyperthermic response to i.v. AMG0347, whereas i.v. AMG0347 increased the number of c-Fos cells in the raphe. We conclude that the neural pathway of TRPV1 antagonist-induced hyperthermia involves TRPV1-expressing sensory nerves in trunk muscles, the DLF, and the same LPB-raphe pathway that controls autonomic cold defenses.

2.
J Neurosci ; 37(29): 6956-6971, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28630253

RESUMO

In the past, we showed that large electrolytic lesions of the dorsomedial hypothalamus (DMH) promoted hypothermia in cold-exposed restrained rats, but attenuated hypothermia in rats challenged with a high dose of bacterial lipopolysaccharide (LPS) in a thermogradient apparatus. The goal of this study was to identify the thermoeffector mechanisms and DMH representation of the two phenomena and thus to understand how the same lesion could produce two opposite effects on body temperature. We found that the permissive effect of large electrolytic DMH lesions on cold-induced hypothermia was due to suppressed thermogenesis. DMH-lesioned rats also could not develop fever autonomically: they did not increase thermogenesis in response to a low, pyrogenic dose of LPS (10 µg/kg, i.v.). In contrast, changes in thermogenesis were uninvolved in the attenuation of the hypothermic response to a high, shock-inducing dose of LPS (5000 µg/kg, i.v.); this attenuation was due to a blockade of cold-seeking behavior. To compile DMH maps for the autonomic cold defense and for the cold-seeking response to LPS, we studied rats with small thermal lesions in different parts of the DMH. Cold thermogenesis had the highest representation in the dorsal hypothalamic area. Cold seeking was represented by a site at the ventral border of the dorsomedial nucleus. Because LPS causes both fever and hypothermia, we originally thought that the DMH contained a single thermoregulatory site that worked as a fever-hypothermia switch. Instead, we have found two separate sites: one that drives thermogenesis and the other, previously unknown, that drives inflammation-associated cold seeking.SIGNIFICANCE STATEMENT Cold-seeking behavior is a life-saving response that occurs in severe systemic inflammation. We studied this behavior in rats with lesions in the dorsomedial hypothalamus (DMH) challenged with a shock-inducing dose of bacterial endotoxin. We built functional maps of the DMH and found the strongest representation of cold-seeking behavior at the ventral border of the dorsomedial nucleus. We also built maps for cold-induced thermogenesis in unanesthetized rats and found the dorsal hypothalamic area to be its main representation site. Our work identifies the neural substrate of cold-seeking behavior in systemic inflammation and expands the functional topography of the DMH, a structure that modulates autonomic, endocrine, and behavioral responses and is a potential therapeutic target in anxiety and panic disorders.


Assuntos
Comportamento Exploratório , Hipotálamo/fisiopatologia , Hipotermia/etiologia , Hipotermia/fisiopatologia , Inflamação/fisiopatologia , Termogênese , Animais , Comportamento Animal , Temperatura Baixa/efeitos adversos , Estado de Consciência , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Rede Nervosa/fisiopatologia , Vias Neurais/fisiopatologia , Ratos , Ratos Wistar
3.
J Neurosci ; 32(6): 2086-99, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22323721

RESUMO

We studied N-(2-aminoethyl)-N-(4-(benzyloxy)-3-methoxybenzyl)thiophene-2-carboxamide hydrochloride (M8-B), a selective and potent antagonist of the transient receptor potential melastatin-8 (TRPM8) channel. In vitro, M8-B blocked cold-induced and TRPM8-agonist-induced activation of rat, human, and murine TRPM8 channels, including those on primary sensory neurons. In vivo, M8-B decreased deep body temperature (T(b)) in Trpm8(+/+) mice and rats, but not in Trpm8(-/-) mice, thus suggesting an on-target action. Intravenous administration of M8-B was more effective in decreasing T(b) in rats than intrathecal or intracerebroventricular administration, indicating a peripheral action. M8-B attenuated cold-induced c-Fos expression in the lateral parabrachial nucleus, thus indicating a site of action within the cutaneous cooling neural pathway to thermoeffectors, presumably on sensory neurons. A low intravenous dose of M8-B did not affect T(b) at either a constantly high or a constantly low ambient temperature (T(a)), but the same dose readily decreased T(b) if rats were kept at a high T(a) during the M8-B infusion and transferred to a low T(a) immediately thereafter. These data suggest that both a successful delivery of M8-B to the skin (high cutaneous perfusion) and the activation of cutaneous TRPM8 channels (by cold) are required for the hypothermic action of M8-B. At tail-skin temperatures <23°C, the magnitude of the M8-B-induced decrease in T(b) was inversely related to skin temperature, thus suggesting that M8-B blocks thermal (cold) activation of TRPM8. M8-B affected all thermoeffectors studied (thermopreferendum, tail-skin vasoconstriction, and brown fat thermogenesis), thus suggesting that TRPM8 is a universal cold receptor in the thermoregulation system.


Assuntos
Temperatura Corporal/fisiologia , Temperatura Baixa , Gânglios Espinais/fisiologia , Estremecimento/fisiologia , Canais de Cátion TRPM/antagonistas & inibidores , Canais de Cátion TRPM/deficiência , Animais , Sistema Nervoso Autônomo/efeitos dos fármacos , Sistema Nervoso Autônomo/fisiologia , Comportamento Animal/efeitos dos fármacos , Temperatura Corporal/efeitos dos fármacos , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Gânglios Espinais/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Preparações Farmacêuticas/administração & dosagem , Ratos , Ratos Wistar , Estremecimento/efeitos dos fármacos , Tiofenos/farmacologia
4.
J Physiol ; 589(Pt 9): 2415-31, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21486787

RESUMO

Hypothermia occurs in the most severe cases of systemic inflammation, but the mechanisms involved are poorly understood. This study evaluated whether the hypothermic response to bacterial lipopolysaccharide (LPS) is modulated by the endocannabinoid anandamide(AEA) and its receptors: cannabinoid-1 (CB1), cannabinoid-2 (CB2) and transient receptor potential vanilloid-1 (TRPV1). In rats exposed to an ambient temperature of 22◦C, a moderate dose of LPS (25 - 100 µg kg−1 I.V.) induced a fall in body temperature with a nadir at ∼100 minpostinjection. This response was not affected by desensitization of intra-abdominal TRPV1 receptors with resiniferatoxin (20 µg kg - 1 I.P.), by systemic TRPV1 antagonism with capsazepine(40mg kg−1 I.P.), or by systemic CB2 receptor antagonism with SR144528 (1.4 mg kg−1 I.P.).However, CB1 receptor antagonism by rimonabant (4.6mg kg−1 I.P.) or SLV319 (15mg kg−1 I.P.)blocked LPS hypothermia. The effect of rimonabant was further studied. Rimonabant blocked LPS hypothermia when administered I.C.V. at a dose (4.6 µg) that was too low to produce systemic effects. The blockade of LPS hypothermia by I.C.V. rimonabant was associated with suppression of the circulating level of tumour necrosis factor-α. In contrast to rimonabant,the I.C.V. administration of AEA (50 µg) enhanced LPS hypothermia. Importantly, I.C.V. AEAdid not evoke hypothermia in rats not treated with LPS, thus indicating that AEA modulates LPS-activated pathways in the brain rather than thermo effector pathways. In conclusion, the present study reveals a novel, critical role of brain CB1 receptors in LPS hypothermia. Brain CB1 receptors may constitute a new therapeutic target in systemic inflammation and sepsis.


Assuntos
Regulação da Temperatura Corporal , Encéfalo/metabolismo , Hipotermia/metabolismo , Lipopolissacarídeos , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Canais de Cátion TRPV/metabolismo , Análise de Variância , Animais , Ácidos Araquidônicos/metabolismo , Regulação da Temperatura Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Canfanos/administração & dosagem , Capsaicina/administração & dosagem , Capsaicina/análogos & derivados , Modelos Animais de Doenças , Diterpenos/administração & dosagem , Endocanabinoides , Feminino , Hipotermia/induzido quimicamente , Hipotermia/fisiopatologia , Hipotermia/prevenção & controle , Injeções Intraperitoneais , Injeções Intravenosas , Injeções Intraventriculares , Masculino , Piperidinas/administração & dosagem , Alcamidas Poli-Insaturadas/metabolismo , Pirazóis/administração & dosagem , Ratos , Ratos Long-Evans , Ratos Wistar , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/antagonistas & inibidores , Rimonabanto , Transdução de Sinais , Sulfonamidas/administração & dosagem , Canais de Cátion TRPV/antagonistas & inibidores , Fatores de Tempo
5.
J Neurosci ; 31(5): 1721-33, 2011 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-21289181

RESUMO

This study aimed at determining the thermoregulatory phenotype of mice lacking transient receptor potential vanilloid-1 (TRPV1) channels. We used Trpv1 knockout (KO) mice and their genetically unaltered littermates to study diurnal variations in deep body temperature (T(b)) and thermoeffector activities under basal conditions, as well as thermoregulatory responses to severe heat and cold. Only subtle alterations were found in the basal T(b) of Trpv1 KO mice or in their T(b) responses to thermal challenges. The main thermoregulatory abnormality of Trpv1 KO mice was a different pattern of thermoeffectors used to regulate T(b). On the autonomic side, Trpv1 KO mice were hypometabolic (had a lower oxygen consumption) and hypervasoconstricted (had a lower tail skin temperature). In agreement with the enhanced skin vasoconstriction, Trpv1 KO mice had a higher thermoneutral zone. On the behavioral side, Trpv1 KO mice preferred a lower ambient temperature and expressed a higher locomotor activity. Experiments with pharmacological TRPV1 agonists (resiniferatoxin and anandamide) and a TRPV1 antagonist (AMG0347) confirmed that TRPV1 channels located outside the brain tonically inhibit locomotor activity. With age (observed for up to 14 months), the body mass of Trpv1 KO mice exceeded that of controls, sometimes approaching 60 g. In summary, Trpv1 KO mice possess a distinct thermoregulatory phenotype, which is coupled with a predisposition to age-associated overweight and includes hypometabolism, enhanced skin vasoconstriction, decreased thermopreferendum, and hyperkinesis. The latter may be one of the primary deficiencies in Trpv1 KO mice. We propose that TRPV1-mediated signals from the periphery tonically suppress the general locomotor activity.


Assuntos
Envelhecimento/metabolismo , Regulação da Temperatura Corporal/genética , Hipercinese/metabolismo , Sobrepeso/metabolismo , Canais de Cátion TRPV/deficiência , Acrilamidas/farmacologia , Animais , Ácidos Araquidônicos/farmacologia , Temperatura Corporal/genética , Temperatura Baixa , Diterpenos/farmacologia , Endocanabinoides , Feminino , Temperatura Alta , Hipercinese/genética , Locomoção , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Testes Neuropsicológicos , Consumo de Oxigênio , Fenótipo , Reação em Cadeia da Polimerase , Alcamidas Poli-Insaturadas/farmacologia , Piridinas/farmacologia , Pele/irrigação sanguínea , Temperatura Cutânea/genética , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/genética , Vasoconstrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...