Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Microsc ; 294(3): 420-439, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38747464

RESUMO

In September 2023, the two largest bioimaging networks in the Americas, Latin America Bioimaging (LABI) and BioImaging North America (BINA), came together during a 1-week meeting in Mexico. This meeting provided opportunities for participants to interact closely with decision-makers from imaging core facilities across the Americas. The meeting was held in a hybrid format and attended in-person by imaging scientists from across the Americas, including Canada, the United States, Mexico, Colombia, Peru, Argentina, Chile, Brazil and Uruguay. The aims of the meeting were to discuss progress achieved over the past year, to foster networking and collaborative efforts among members of both communities, to bring together key members of the international imaging community to promote the exchange of experience and expertise, to engage with industry partners, and to establish future directions within each individual network, as well as common goals. This meeting report summarises the discussions exchanged, the achievements shared, and the goals set during the LABIxBINA2023: Bioimaging across the Americas meeting.

2.
Ageing Res Rev ; 93: 102162, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38070831

RESUMO

Unhealthy lifestyle choices, poor diet, and aging can have negative influences on cognition, gradually increasing the risk for mild cognitive impairment (MCI) and the continuum comprising early dementia. Aging is the greatest risk factor for age-related dementias such as Alzheimer's disease, and the aging process is known to be influenced by life events that can positively or negatively affect age-related diseases. Remarkably, life experiences that make the brain vulnerable to dementia, such as seizure episodes, neurotoxin exposures, metabolic disorders, and trauma-inducing events (e.g. traumatic injuries or mild neurotrauma from a fall or blast exposure), have been associated with negative effects on proteostasis and synaptic integrity. Functional compromise of the autophagy-lysosomal pathway, a major contributor to proteostasis, has been implicated in Alzheimer's disease, Parkinson's disease, obesity-related pathology, Huntington's disease, as well as in synaptic degeneration which is the best correlate of cognitive decline. Correspondingly, pharmacological and non-pharmacological strategies that positively modulate lysosomal proteases are recognized as synaptoprotective through degradative clearance of pathogenic proteins. Here, we discuss life-associated vulnerabilities that influence key hallmarks of brain aging and the increased burden of age-related dementias. Additionally, we discuss exercise and diet among the lifestyle strategies that regulate proteostasis as well as synaptic integrity, leading to evident prevention of cognitive deficits during brain aging in pre-clinical models.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Deficiências na Proteostase , Humanos , Doença de Alzheimer/prevenção & controle , Doença de Alzheimer/complicações , Proteostase , Disfunção Cognitiva/prevenção & controle , Disfunção Cognitiva/metabolismo , Estilo de Vida
3.
Brain Pathol ; 31(3): e12936, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33629462

RESUMO

Explosive shockwaves, and other types of blast exposures, are linked to injuries commonly associated with military service and to an increased risk for the onset of dementia. Neurological complications following a blast injury, including depression, anxiety, and memory problems, often persist even when brain damage is undetectable. Here, hippocampal explants were exposed to the explosive 1,3,5-trinitro-1,3,5-triazinane (RDX) to identify indicators of blast-induced changes within important neuronal circuitries. Highly controlled detonations of small, 1.7-gram RDX spherical charges reduced synaptic markers known to be downregulated in cognitive disorders, but without causing overt neuronal loss or astroglial responses. In the absence of neuromorphological alterations, levels of synaptophysin, GluA1, and synapsin IIb were significantly diminished within 24 hr, and these synaptic components exhibited progressive reductions following blast exposure as compared to their stable maintenance in control explants. In contrast, labeling of the synapsin IIa isoform remained unaltered, while neuropilar staining of other markers decreased, including synapsin IIb and neural cell adhesion molecule (NCAM) isoforms, along with evidence of NCAM proteolytic breakdown. NCAM180 displayed a distinct decline after the RDX blasts, whereas NCAM140 and NCAM120 exhibited smaller or no deterioration, respectively. Interestingly, the extent of synaptic marker reduction correlated with AT8-positive tau levels, with tau pathology stochastically found in CA1 neurons and their dendrites. The decline in synaptic components was also reflected in the size of evoked postsynaptic currents recorded from CA1 pyramidals, which exhibited a severe and selective reduction. The identified indicators of blast-mediated synaptopathy point to the need for early biomarkers of explosives altering synaptic integrity with links to dementia risk, to advance strategies for both cognitive health and therapeutic monitoring.


Assuntos
Traumatismos por Explosões/patologia , Demência/patologia , Hipocampo/patologia , Militares/psicologia , Astrócitos/patologia , Traumatismos por Explosões/metabolismo , Traumatismos por Explosões/psicologia , Lesões Encefálicas/patologia , Transtornos Cognitivos/patologia , Humanos , Moléculas de Adesão de Célula Nervosa/metabolismo , Neurônios/patologia
4.
Int Rev Neurobiol ; 154: 303-324, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32739009

RESUMO

The endosomal-lysosomal pathways and related autophagic processes are responsible for proteostasis, involving complexes between lysosomes and autophagosomes. Lysosomes are a key component of homeostasis, involved in cell signaling, metabolism, and quality control, and they experience functional compromise in metabolic diseases, aging, and neurodegenerative diseases. Many genetic mutations and risk factor genes associated with proteinopathies, as well as with metabolic diseases like diabetes, negatively influence endocytic trafficking and autophagic clearance. In contrast, health-improving exercise induces autophagy-lysosomal degradation, perhaps promoting efficient digestion of injured organelles so that undamaged organelles ensure cellular healthiness. Reductions in lysosomal hydrolases are implicated in Alzheimer's, Parkinson's, and lysosomal storage diseases, as well as obesity-related pathology, and members of the cathepsin enzyme family are involved in clearing both Aß42 and α-synuclein. Upregulation of cathepsin hydrolases improves synaptic and memory functions in models of dementia and in exercising humans, thus identifying lysosomal-related systems as vital for healthy cognitive aging.


Assuntos
Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Diabetes Mellitus/metabolismo , Exercício Físico , Lisossomos/metabolismo , Doenças Metabólicas/metabolismo , Redes e Vias Metabólicas , Obesidade/metabolismo , Proteostase , Sinucleinopatias/metabolismo , Animais , Exercício Físico/fisiologia , Humanos , Redes e Vias Metabólicas/fisiologia , Proteostase/fisiologia
5.
Neurosci Lett ; 714: 134541, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31605772

RESUMO

Down syndrome (DS) patients are more susceptible to Alzheimer's disease (AD) due to the presence of three copies of genes on chromosome 21 such as DYRK1A, which encodes a broad acting kinase, and APP (amyloid precursor protein), leading to formation of amyloid beta (Aß) peptide and hyperphosphorylation of Tau. In this study, we investigated the association among miRNAs miR-17, -20a, -101, -106b, -199b, -26a, 26b and some of their target mRNAs such as APP, DYRK1A and BDNF, as well as the levels of hyperphosphorylated Tau in the hippocampus of a 2 and 5 months old mice model of trisomy 21 (Ts65Dn). Results indicated that increased APP expression in the hippocampus of 5 months old DS mice might be correlated with decrease in miR-17, -20a, -101 and -106b. Whereas at 2 months of age normal levels of APP expression in the hippocampus was correlated with increased levels of miR-17, -101 and -106b in DS mice. DYRK1A mRNA also increased in the hippocampus of 5 months old DS mice and it is associated with decreased levels of miR-199b. Increased levels of DYRK1A in 5-month old mice are associated with increased phosphorylation of Tau at Thr212 residue but not at Ser199-202. Tau pathology is accompanied by decreased expression of BDNF and increased miR-26a/b in mice of 5 months of age. Taken together, data indicate that miR-17, -20a, -26a/b, -101, -106b and -199b might be interesting targets to mitigate Tau and Aß pathology in DS.


Assuntos
Envelhecimento/metabolismo , Precursor de Proteína beta-Amiloide/biossíntese , Síndrome de Down/metabolismo , Hipocampo/metabolismo , MicroRNAs/biossíntese , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Tirosina Quinases/biossíntese , Proteínas tau/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos , Fosforilação , Quinases Dyrk
6.
Bioorg Med Chem ; 27(23): 115096, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31629610

RESUMO

FAAH inhibitors offer safety advantages by augmenting the anandamide levels "on demand" to promote neuroprotective mechanisms without the adverse psychotropic effects usually seen with direct and chronic activation of the CB1 receptor. FAAH is an enzyme implicated in the hydrolysis of the endocannabinoid N-arachidonoylethanolamine (AEA), which is a partial agonist of the CB1 receptor. Herein, we report the discovery of a new series of highly potent and selective carbamate FAAH inhibitors and their evaluation for neuroprotection. The new inhibitors showed potent nanomolar inhibitory activity against human recombinant and purified rat FAAH, were selective (>1000-fold) against serine hydrolases MGL and ABHD6 and lacked any affinity for the cannabinoid receptors CB1 and CB2. Evaluation of FAAH inhibitors 9 and 31 using the in vitro competitive activity-based protein profiling (ABPP) assay confirmed that both inhibitors were highly selective for FAAH in the brain, since none of the other FP-reactive serine hydrolases in this tissue were inhibited by these agents. Our design strategy followed a traditional SAR approach and was supported by molecular modeling studies based on known FAAH cocrystal structures. To rationally design new molecules that are irreversibly bound to FAAH, we have constructed "precovalent" FAAH-ligand complexes to identify good binding geometries of the ligands within the binding pocket of FAAH and then calculated covalent docking poses to select compounds for synthesis. FAAH inhibitors 9 and 31 were evaluated for neuroprotection in rat hippocampal slice cultures. In the brain tissue, both inhibitors displayed protection against synaptic deterioration produced by kainic acid-induced excitotoxicity. Thus, the resultant compounds produced through rational design are providing early leads for developing therapeutics against seizure-related damage associated with a variety of disorders.


Assuntos
Amidoidrolases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Fármacos Neuroprotetores/farmacologia , Piperazina/farmacologia , Piperidinas/farmacologia , Amidoidrolases/metabolismo , Animais , Desenho de Fármacos , Inibidores Enzimáticos/química , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/química , Piperazina/análogos & derivados , Piperidinas/química , Ratos
7.
Int J Mol Sci ; 20(18)2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31505809

RESUMO

Many neurodegenerative disorders have lysosomal impediments, and the list of proposed treatments targeting lysosomes is growing. We investigated the role of lysosomes in Alzheimer's disease (AD) and other age-related disorders, as well as in a strategy to compensate for lysosomal disturbances. Comprehensive immunostaining was used to analyze brains from wild-type mice vs. amyloid precursor protein/presenilin-1 (APP/PS1) mice that express mutant proteins linked to familial AD. Also, lysosomal modulation was evaluated for inducing synaptic and behavioral improvements in transgenic models of AD and Parkinson's disease, and in models of mild cognitive impairment (MCI). Amyloid plaques were surrounded by swollen organelles positive for the lysosome-associated membrane protein 1 (LAMP1) in the APP/PS1 cortex and hippocampus, regions with robust synaptic deterioration. Within neurons, lysosomes contain the amyloid ß 42 (Aß42) degradation product Aß38, and this indicator of Aß42 detoxification was augmented by Z-Phe-Ala-diazomethylketone (PADK; also known as ZFAD) as it enhanced the lysosomal hydrolase cathepsin B (CatB). PADK promoted Aß42 colocalization with CatB in lysosomes that formed clusters in neurons, while reducing Aß deposits as well. PADK also reduced amyloidogenic peptides and α-synuclein in correspondence with restored synaptic markers, and both synaptic and cognitive measures were improved in the APP/PS1 and MCI models. These findings indicate that lysosomal perturbation contributes to synaptic and cognitive decay, whereas safely enhancing protein clearance through modulated CatB ameliorates the compromised synapses and cognition, thus supporting early CatB upregulation as a disease-modifying therapy that may also slow the MCI to dementia continuum.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Lisossomos/metabolismo , Doença de Parkinson/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/patologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Humanos , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/genética , Lisossomos/patologia , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Sinapses/metabolismo , Sinapses/patologia
8.
JCI Insight ; 4(12)2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31217360

RESUMO

Engulfment and cell motility protein 1 (ELMO1) is part of a guanine nucleotide exchange factor for Ras-related C3 botulinum toxin substrate (Rac), and ELMO1 polymorphisms were identified to be associated with diabetic nephropathy in genome-wide association studies. We generated a set of Akita Ins2C96Y diabetic mice having 5 graded cardiac mRNA levels of ELMO1 from 30% to 200% of normal and found that severe dilated cardiomyopathy develops in ELMO1-hypermorphic mice independent of renal function at age 16 weeks, whereas ELMO1-hypomorphic mice were completely protected. As ELMO1 expression increased, reactive oxygen species indicators, dissociation of the intercalated disc, mitochondrial fragmentation/dysfunction, cleaved caspase-3 levels, and actin polymerization increased in hearts from Akita mice. Cardiomyocyte-specific overexpression in otherwise ELMO1-hypomorphic Akita mice was sufficient to promote cardiomyopathy. Cardiac Rac1 activity was positively correlated with the ELMO1 levels, and oral administration of a pan-Rac inhibitor, EHT1864, partially mitigated cardiomyopathy of the ELMO1 hypermorphs. Disrupting Nox4, a Rac-independent NADPH oxidase, also partially mitigated it. In contrast, a pan-NADPH oxidase inhibitor, VAS3947, markedly prevented cardiomyopathy. Our data demonstrate that in diabetes mellitus ELMO1 is the "rate-limiting" factor of reactive oxygen species production via both Rac-dependent and Rac-independent NADPH oxidases, which in turn trigger cellular signaling cascades toward cardiomyopathy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cardiomiopatias Diabéticas/etiologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Movimento Celular , Conexina 43/metabolismo , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Feminino , Coração/fisiopatologia , Masculino , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , NADPH Oxidase 4/metabolismo
9.
Sci Rep ; 9(1): 6532, 2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-31024077

RESUMO

Organophosphates account for many of the world's deadliest poisons. They inhibit acetylcholinesterase causing cholinergic crises that lead to seizures and death, while survivors commonly experience long-term neurological problems. Here, we treated brain explants with the organophosphate compound paraoxon and uncovered a unique mechanism of neurotoxicity. Paraoxon-exposed hippocampal slice cultures exhibited progressive declines in synaptophysin, synapsin II, and PSD-95, whereas reduction in GluR1 was slower and NeuN and Nissl staining showed no indications of neuronal damage. The distinctive synaptotoxicity was observed in dendritic zones of CA1 and dentate gyrus. Interestingly, declines in synapsin II dendritic labeling correlated with increased staining for ß1 integrin, a component of adhesion receptors that regulate synapse maintenance and plasticity. The paraoxon-induced ß1 integrin response was targeted to synapses, and the two-fold increase in ß1 integrin was selective as other synaptic adhesion molecules were unchanged. Additionally, ß1 integrin-cofilin signaling was triggered by the exposure and correlations were found between the extent of synaptic decline and the level of ß1 integrin responses. These findings identified organophosphate-mediated early and lasting synaptotoxicity which can explain delayed neurological dysfunction later in life. They also suggest that the interplay between synaptotoxic events and compensatory adhesion responses influences neuronal fate in exposed individuals.


Assuntos
Dendritos/metabolismo , Exposição Ambiental , Hipocampo/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Organofosfatos/toxicidade , Transdução de Sinais , Sinapses/patologia , Animais , Antígenos Nucleares/metabolismo , Inibidores da Colinesterase/farmacologia , Dendritos/efeitos dos fármacos , Proteína 4 Homóloga a Disks-Large/metabolismo , Hipocampo/efeitos dos fármacos , Integrina beta1/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Paraoxon/toxicidade , Ratos , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapsinas/metabolismo
10.
Neurotox Res ; 35(2): 410-420, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30276717

RESUMO

Proteostasis and oxidative stress were evaluated in motor cortex and spinal cord of aged Lewis rats exposed to 1 mg/kg/day of rotenone during 4 or 8 weeks, prior or after practicing three protocols of mild treadmill running. Results demonstrated that exercise done after the beginning of neurodegeneration reverted the increased oxidative stress (measured by H2O2 levels and SOD activity), increased neuron strength, and improved proteostasis in motor cortex. Spinal cord was not affected. Treadmill running practiced before neurodegeneration protected cortical motor neurons of the rotenone-exposed rats; but in this case, oxidative stress was not altered, whereas proteasome activity was increased and autophagy decreased. Spinal cord was not protected when exercise was practiced before neurodegeneration. Prolonged treadmill running (10 weeks) increased oxidative stress, autophagy, and proteasome activity, whereas neuron viability was decreased in motor cortex. In spinal cord, this protocol decreased oxidative stress and increased proteasome activity. Major conclusions were that treadmill running practiced before or after the beginning of neurodegeneration may protect motor cortex neurons, whereas prolonged mild running seems to be beneficial for spinal cord.


Assuntos
Teste de Esforço/métodos , Córtex Motor/metabolismo , Degeneração Neural/metabolismo , Estresse Oxidativo/fisiologia , Condicionamento Físico Animal/fisiologia , Proteostase/fisiologia , Animais , Inseticidas/toxicidade , Masculino , Córtex Motor/efeitos dos fármacos , Degeneração Neural/induzido quimicamente , Degeneração Neural/terapia , Estresse Oxidativo/efeitos dos fármacos , Condicionamento Físico Animal/métodos , Proteostase/efeitos dos fármacos , Ratos , Ratos Endogâmicos Lew , Rotenona/toxicidade
11.
Neurotox. Res. ; 35(2): p. 410-420, 2019.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15793

RESUMO

Proteostasis and oxidative stress were evaluated in motor cortex and spinal cord of aged Lewis rats exposed to 1mg/kg/day of rotenone during 4 or 8weeks, prior or after practicing three protocols of mild treadmill running. Results demonstrated that exercise done after the beginning of neurodegeneration reverted the increased oxidative stress (measured by H2O2 levels and SOD activity), increased neuron strength, and improved proteostasis in motor cortex. Spinal cord was not affected. Treadmill running practiced before neurodegeneration protected cortical motor neurons of the rotenone-exposed rats; but in this case, oxidative stress was not altered, whereas proteasome activity was increased and autophagy decreased. Spinal cord was not protected when exercise was practiced before neurodegeneration. Prolonged treadmill running (10weeks) increased oxidative stress, autophagy, and proteasome activity, whereas neuron viability was decreased in motor cortex. In spinal cord, this protocol decreased oxidative stress and increased proteasome activity. Major conclusions were that treadmill running practiced before or after the beginning of neurodegeneration may protect motor cortex neurons, whereas prolonged mild running seems to be beneficial for spinal cord.

12.
Neurotox Res, v. 35, n. 2, p. 410-420, fev. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2654

RESUMO

Proteostasis and oxidative stress were evaluated in motor cortex and spinal cord of aged Lewis rats exposed to 1mg/kg/day of rotenone during 4 or 8weeks, prior or after practicing three protocols of mild treadmill running. Results demonstrated that exercise done after the beginning of neurodegeneration reverted the increased oxidative stress (measured by H2O2 levels and SOD activity), increased neuron strength, and improved proteostasis in motor cortex. Spinal cord was not affected. Treadmill running practiced before neurodegeneration protected cortical motor neurons of the rotenone-exposed rats; but in this case, oxidative stress was not altered, whereas proteasome activity was increased and autophagy decreased. Spinal cord was not protected when exercise was practiced before neurodegeneration. Prolonged treadmill running (10weeks) increased oxidative stress, autophagy, and proteasome activity, whereas neuron viability was decreased in motor cortex. In spinal cord, this protocol decreased oxidative stress and increased proteasome activity. Major conclusions were that treadmill running practiced before or after the beginning of neurodegeneration may protect motor cortex neurons, whereas prolonged mild running seems to be beneficial for spinal cord.

13.
J Sports Sci ; 36(12): 1363-1370, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28895489

RESUMO

Moderate physical exercise acts at molecular and behavioural levels, such as interfering in neuroplasticity, cell death, neurogenesis, cognition and motor functions. Therefore, the aim of this study is to analyse the cellular effects of moderate treadmill running upon substantia nigra during early neurodegeneration. Aged male Lewis rats (9-month-old) were exposed to rotenone 1mg/kg/day (8 weeks) and 6 weeks of moderate treadmill running, beginning 4 weeks after rotenone exposure. Substantia nigra was extracted and submitted to proteasome and antioxidant enzymes activities, hydrogen peroxide levels and Western blot to evaluate tyrosine hydroxylase (TH), alpha-synuclein, Tom-20, PINK1, TrkB, SLP1, CRMP-2, Rab-27b, LC3II and Beclin-1 level. It was demonstrated that moderate treadmill running, practiced during early neurodegeneration, prevented the increase of alpha-synuclein and maintained the levels of TH unaltered in substantia nigra of aged rats. Physical exercise also stimulated autophagy and prevented impairment of mitophagy, but decreased proteasome activity in rotenone-exposed aged rats. Physical activity also prevented H2O2 increase during early neurodegeneration, although the involved mechanism remains to be elucidated. TrkB levels and its anterograde trafficking seem not to be influenced by moderate treadmill running. In conclusion, moderate physical training could prevent early neurodegeneration in substantia nigra through the improvement of autophagy and mitophagy.


Assuntos
Doenças Neurodegenerativas/fisiopatologia , Condicionamento Físico Animal , Corrida , Substância Negra/patologia , Animais , Autofagia , Modelos Animais de Doenças , Peróxido de Hidrogênio/metabolismo , Masculino , Mitofagia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos Endogâmicos Lew , Rotenona/toxicidade , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/metabolismo
14.
J. Sports Sci. ; 36(12): p. 1363-1370, 2018.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15003

RESUMO

Moderate physical exercise acts at molecular and behavioural levels, such as interfering in neuroplasticity, cell death, neurogenesis, cognition and motor functions. Therefore, the aim of this study is to analyse the cellular effects of moderate treadmill running upon substantia nigra during early neurodegeneration. Aged male Lewis rats (9-month-old) were exposed to rotenone 1mg/kg/day (8weeks) and 6weeks of moderate treadmill running, beginning 4weeks after rotenone exposure. Substantia nigra was extracted and submitted to proteasome and antioxidant enzymes activities, hydrogen peroxide levels and Western blot to evaluate tyrosine hydroxylase (TH), alpha-synuclein, Tom-20, PINK1, TrkB, SLP1, CRMP-2, Rab-27b, LC3II and Beclin-1 level. It was demonstrated that moderate treadmill running, practiced during early neurodegeneration, prevented the increase of alpha-synuclein and maintained the levels of TH unaltered in substantia nigra of aged rats. Physical exercise also stimulated autophagy and prevented impairment of mitophagy, but decreased proteasome activity in rotenone-exposed aged rats. Physical activity also prevented H2O2 increase during early neurodegeneration, although the involved mechanism remains to be elucidated. TrkB levels and its anterograde trafficking seem not to be influenced by moderate treadmill running. In conclusion, moderate physical training could prevent early neurodegeneration in substantia nigra through the improvement of autophagy and mitophagy.

15.
J Sports Sci, v. 36, n. 12, p. 1363-1370, 2018
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2449

RESUMO

Moderate physical exercise acts at molecular and behavioural levels, such as interfering in neuroplasticity, cell death, neurogenesis, cognition and motor functions. Therefore, the aim of this study is to analyse the cellular effects of moderate treadmill running upon substantia nigra during early neurodegeneration. Aged male Lewis rats (9-month-old) were exposed to rotenone 1mg/kg/day (8weeks) and 6weeks of moderate treadmill running, beginning 4weeks after rotenone exposure. Substantia nigra was extracted and submitted to proteasome and antioxidant enzymes activities, hydrogen peroxide levels and Western blot to evaluate tyrosine hydroxylase (TH), alpha-synuclein, Tom-20, PINK1, TrkB, SLP1, CRMP-2, Rab-27b, LC3II and Beclin-1 level. It was demonstrated that moderate treadmill running, practiced during early neurodegeneration, prevented the increase of alpha-synuclein and maintained the levels of TH unaltered in substantia nigra of aged rats. Physical exercise also stimulated autophagy and prevented impairment of mitophagy, but decreased proteasome activity in rotenone-exposed aged rats. Physical activity also prevented H2O2 increase during early neurodegeneration, although the involved mechanism remains to be elucidated. TrkB levels and its anterograde trafficking seem not to be influenced by moderate treadmill running. In conclusion, moderate physical training could prevent early neurodegeneration in substantia nigra through the improvement of autophagy and mitophagy.

16.
J Mol Neurosci ; 63(1): 115-122, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28803438

RESUMO

The anticholinesterase paraoxon (Pxn) is related to military nerve agents that increase acetylcholine levels, trigger seizures, and cause excitotoxic damage in the brain. In rat hippocampal slice cultures, high-dose Pxn was applied resulting in a presynaptic vulnerability evidenced by a 64% reduction in synapsin IIb (syn IIb) levels, whereas the postsynaptic protein GluR1 was unchanged. Other signs of Pxn-induced cytotoxicity include the oxidative stress-related production of stable 4-hydroxynonenal (4-HNE)-protein adducts. Next, the Pxn toxicity was tested for protective effects by the fatty acid amide hydrolase (FAAH) inhibitor AM5206, a compound linked to enhanced repair signaling through the endocannabinoid pathway. The Pxn-mediated declines in syn IIb and synaptophysin were prevented by AM5206 in the slice cultures. To test if the protective results in the slice model translate to an in vivo model, AM5206 was injected i.p. into rats, followed immediately by subcutaneous Pxn administration. The toxin caused a pathogenic cascade initiated by seizure events, leading to presynaptic marker decline and oxidative changes in the hippocampus and frontal cortex. AM5206 exhibited protective effects including the reduction of seizure severity by 86%, and improving balance and coordination measured 24 h post-insult. As observed in hippocampal slices, the FAAH inhibitor also prevented the Pxn-induced loss of syn IIb in vivo. In addition, the AM5206 compound reduced the 4-HNE modifications of proteins and the ß1 integrin activation events both in vitro and in vivo. These results indicate that Pxn exposure produces oxidative and synaptic toxicity that leads to the behavioral deficits manifested by the neurotoxin. In contrast, the presence of FAAH inhibitor AM5206 offsets the pathogenic cascade elicited by the Pxn anticholinesterase.


Assuntos
Endocanabinoides/metabolismo , Inibidores Enzimáticos/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Paraoxon/toxicidade , Éteres Fenílicos/uso terapêutico , Convulsões/tratamento farmacológico , Amidoidrolases/antagonistas & inibidores , Animais , Inibidores Enzimáticos/farmacologia , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Inseticidas/toxicidade , Masculino , Fármacos Neuroprotetores/farmacologia , Éteres Fenílicos/farmacologia , Ratos , Ratos Sprague-Dawley , Convulsões/etiologia , Sinaptofisina/metabolismo
17.
PLoS One ; 12(8): e0182895, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28797057

RESUMO

Impaired protein clearance likely increases the risk of protein accumulation disorders including Alzheimer's disease (AD). Protein degradation through the proteasome pathway decreases with age and in AD brains, and the Aß42 peptide has been shown to impair proteasome function in cultured cells and in a cell-free model. Here, Aß42 was studied in brain tissue to measure changes in protein clearance pathways and related secondary pathology. Oligomerized Aß42 (0.5-1.5 µM) reduced proteasome activity by 62% in hippocampal slice cultures over a 4-6-day period, corresponding with increased tau phosphorylation and reduced synaptophysin levels. Interestingly, the decrease in proteasome activity was associated with a delayed inverse effect, >2-fold increase, regarding lysosomal cathepsin B (CatB) activity. The CatB enhancement did not correspond with the Aß42-mediated phospho-tau alterations since the latter occurred prior to the CatB response. Hippocampal slices treated with the proteasome inhibitor lactacystin also exhibited an inverse effect on CatB activity with respect to diminished proteasome function. Lactacystin caused earlier CatB enhancement than Aß42, and no correspondence was evident between up-regulated CatB levels and the delayed synaptic pathology indicated by the loss of pre- and postsynaptic markers. Contrasting the inverse effects on the proteasomal and lysosomal pathways by Aß42 and lactacystin, such were not found when CatB activity was up-regulated two-fold with Z-Phe-Ala-diazomethylketone (PADK). Instead of an inverse decline, proteasome function was increased marginally in PADK-treated hippocampal slices. Unexpectedly, the proteasomal augmentation was significantly pronounced in Aß42-compromised slices, while absent in lactacystin-treated tissue, resulting in >2-fold improvement for nearly complete recovery of proteasome function by the CatB-enhancing compound. The PADK treatment also reduced Aß42-mediated tau phosphorylation and synaptic marker declines, corresponding with the positive modulation of both proteasome activity and the lysosomal CatB enzyme. These findings indicate that proteasomal stress contributes to AD-type pathogenesis and that governing such pathology occurs through crosstalk between the two protein clearance pathways.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Catepsina B/metabolismo , Hipocampo/metabolismo , Lisossomos/metabolismo , Fragmentos de Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas tau/metabolismo , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacologia , Animais , Inibidores de Cisteína Proteinase/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Sinaptofisina/metabolismo
18.
Exp Neurol ; 286: 107-115, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27720798

RESUMO

Explosives create shockwaves that cause blast-induced neurotrauma, one of the most common types of traumatic brain injury (TBI) linked to military service. Blast-induced TBIs are often associated with reduced cognitive and behavioral functions due to a variety of factors. To study the direct effects of military explosive blasts on brain tissue, we removed systemic factors by utilizing rat hippocampal slice cultures. The long-term slice cultures were briefly sealed air-tight in serum-free medium, lowered into a 37°C water-filled tank, and small 1.7-gram assemblies of cyclotrimethylene trinitramine (RDX) were detonated 15cm outside the tank, creating a distinct shockwave recorded at the culture plate position. Compared to control mock-treated groups of slices that received equal submerge time, 1-3 blast impacts caused a dose-dependent reduction in the AMPA receptor subunit GluR1. While only a small reduction was found in hippocampal slices exposed to a single RDX blast and harvested 1-2days later, slices that received two consecutive RDX blasts 4min apart exhibited a 26-40% reduction in GluR1, and the receptor subunit was further reduced by 64-72% after three consecutive blasts. Such loss correlated with increased levels of HDAC2, a histone deacetylase implicated in stress-induced reduction of glutamatergic transmission. No evidence of synaptic marker recovery was found at 72h post-blast. The presynaptic marker synaptophysin was found to have similar susceptibility as GluR1 to the multiple explosive detonations. In contrast to the synaptic protein reductions, actin levels were unchanged, spectrin breakdown was not detected, and Fluoro-Jade B staining found no indication of degenerating neurons in slices exposed to three RDX blasts, suggesting that small, sub-lethal explosives are capable of producing selective alterations to synaptic integrity. Together, these results indicate that blast waves from military explosive cause signs of synaptic compromise without producing severe neurodegeneration, perhaps explaining the cognitive and behavioral changes in those blast-induced TBI sufferers that have no detectable neuropathology.


Assuntos
Traumatismos por Explosões/patologia , Hipocampo/metabolismo , Receptores de AMPA/metabolismo , Sinaptofisina/metabolismo , Análise de Variância , Animais , Animais Recém-Nascidos , Traumatismos por Explosões/etiologia , Substâncias Explosivas/efeitos adversos , Fluoresceínas/farmacocinética , Hipocampo/lesões , Histona Desacetilase 2/metabolismo , Técnicas In Vitro , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Modelos Teóricos , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Triazinas/efeitos adversos
19.
Arq Neuropsiquiatr ; 74(9): 737-744, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27706423

RESUMO

Cell physiology is impaired before protein aggregation and this may be more relevant than inclusions themselves for neurodegeneration. The present study aimed to characterize an animal model to enable the analysis of the cell biology before and after protein aggregation. Ten-month-old Lewis rats were exposed either to 1 or 2 mg/kg/day of rotenone, delivered subcutaneously through mini-pumps, for one month. Hyperphosphorylated TAU, alpha-synuclein, amyloid-beta peptide and protein carbonylation (indicative of oxidative stress) were evaluated in the hippocampus, substantia nigra and locus coeruleus through immunohistochemistry or western blot. It was found that 2 mg/kg/day rotenone increased amyloid-beta peptide, hyperphosphorylation of TAU and alpha-synuclein. Rotenone at 1mg/kg/day did not alter protein levels. Protein carbonylation remained unchanged. This study demonstrated that aged Lewis rats exposed to a low dose of rotenone is a useful model to study cellular processes before protein aggregation, while the higher dose makes a good model to study the effects of protein inclusions.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Agregação Patológica de Proteínas/induzido quimicamente , Agregação Patológica de Proteínas/patologia , Rotenona/administração & dosagem , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Animais , Western Blotting , Sistema Nervoso Central/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Imuno-Histoquímica , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/metabolismo , Locus Cerúleo/patologia , Masculino , Estresse Oxidativo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Agregação Patológica de Proteínas/metabolismo , Carbonilação Proteica , Ratos Endogâmicos Lew , Reprodutibilidade dos Testes , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/patologia , alfa-Sinucleína/efeitos dos fármacos , alfa-Sinucleína/metabolismo
20.
Arq. neuropsiquiatr ; 74(9): 737-744, Sept. 2016. graf
Artigo em Inglês | LILACS | ID: lil-796045

RESUMO

ABSTRACT Cell physiology is impaired before protein aggregation and this may be more relevant than inclusions themselves for neurodegeneration. The present study aimed to characterize an animal model to enable the analysis of the cell biology before and after protein aggregation. Ten-month-old Lewis rats were exposed either to 1 or 2 mg/kg/day of rotenone, delivered subcutaneously through mini-pumps, for one month. Hyperphosphorylated TAU, alpha-synuclein, amyloid-beta peptide and protein carbonylation (indicative of oxidative stress) were evaluated in the hippocampus, substantia nigra and locus coeruleus through immunohistochemistry or western blot. It was found that 2 mg/kg/day rotenone increased amyloid-beta peptide, hyperphosphorylation of TAU and alpha-synuclein. Rotenone at 1mg/kg/day did not alter protein levels. Protein carbonylation remained unchanged. This study demonstrated that aged Lewis rats exposed to a low dose of rotenone is a useful model to study cellular processes before protein aggregation, while the higher dose makes a good model to study the effects of protein inclusions.


RESUMO A fisiologia celular está prejudicada antes da agregação proteica podendo ser mais importante para a neurodegeneração do que as próprias inclusões. Assim, o objetivo deste estudo é caracterizar um modelo animal para analisar os mecanismos e efeitos da agregação proteica. Ratos Lewis com 10 meses de idade foram expostos a rotenona (1 ou 2 mg/kg/dia), administrada subcutaneamente, utilizando minibombas osmóticas. Os níveis de peptídeo beta-amiloide, TAU hiperfosforilada, alfa-sinucleína e proteínas carboniladas (indicativo de estresse oxidativo) foram avaliados por imunohistoquímica e western blot no hipocampo, substância negra e locus coeruleus. Foi demonstrado que 2 mg/kg/dia de rotenona promoveu aumento do peptídeo beta-amiloide, hiperfosforilação da TAU e alfa-sinucleína. Já 1 mg/kg/dia de rotenona não alterou os níveis dessas proteína nessas regiões. As proteínas carboniladas não se alteraram. Foi demonstrado que ratos Lewis idosos expostos a baixas doses de rotenona são modelo de estudo dos processos celulares antes da agregação proteica, enquanto 2 mg/kg/dia de rotenona permite estudos sobre os efeitos da agregação proteica.


Assuntos
Animais , Masculino , Rotenona/administração & dosagem , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Agregação Patológica de Proteínas/induzido quimicamente , Agregação Patológica de Proteínas/patologia , Ratos Endogâmicos Lew , Substância Negra/efeitos dos fármacos , Imuno-Histoquímica , Sistema Nervoso Central/metabolismo , Western Blotting , Reprodutibilidade dos Testes , Peptídeos beta-Amiloides/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Estresse Oxidativo , alfa-Sinucleína/efeitos dos fármacos , alfa-Sinucleína/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...