Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Behav ; 169: 208-215, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27939362

RESUMO

Dogs are highly sensitive to sound stimuli, especially fireworks, firearms, and thunder, and therefore these sounds are used as models of stress reactivity in dogs. Companion and laboratory dogs may respond differently to stressful stimuli, due to differences in management and their relationship with humans. Therefore, the reactivity of beagle dogs (laboratory) and companion dogs to an acute acoustic stress model was studied by analysing the heart rate variability (HRV; cardiac interval values), serum cortisol levels and various behavioural parameters. Eight beagles and six privately owned dogs with no history of phobia to thunder were used. The sound stimulus consisted of a standardized recording of thunder for 2.5min with a maximum intensity of 103-104dB. To evaluate the HRV, cardiac intervals were recorded using a frequency meter (Polar RS800CX model), and later the data were analysed using CardioSeries 2.4.1 software. In both laboratory and companion dogs, thunder promoted an increase in the power of the LF band of the cardiac interval spectrum, in the LF/HF ratio and in the HR, and a decrease in the power of the HF band of the cardiac interval spectrum. Companion dogs showed higher cortisol levels, than beagles, independently of the time point studied and a significant increase in the cortisol levels 15min after acoustic stress, while beagles did not show any alterations in their cortisol levels in response to the sound. On the other hand, beagles showed higher scores in the trembling, hiding, vigilance, running, salivation, bolting and startle parameters than companion dogs. Our results showed that independently of the sound stimulus, companion dogs had higher cortisol levels than laboratory dogs. Furthermore, the sound stimulus induced a marked autonomic imbalance towards sympathetic predominance in both laboratory and companion dogs. However a significant increase in the cortisol was observed only in companion dogs. On the other hand, in general the behavioural response was more pronounced in laboratory dogs than in companion dogs.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Sistema Endócrino/fisiologia , Frequência Cardíaca/fisiologia , Hidrocortisona/sangue , Comportamento Social , Estimulação Acústica/efeitos adversos , Análise de Variância , Animais , Cães , Feminino , Masculino , Animais de Estimação , Estresse Psicológico/etiologia , Estresse Psicológico/fisiopatologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-26413116

RESUMO

Startle is a fast response elicited by sudden acoustic, tactile, or visual stimuli in a variety of animals and in humans. As the magnitude of startle response can be modulated by external and internal variables, it can be a useful tool to study reaction to stress. Our study evaluated whether acupuncture can change cardiac autonomic modulation (heart rate variability); and behavioural (reactivity) and endocrine (cortisol levels) parameters in response to startle. Brazilian Sport horses (n = 6) were subjected to a model of startle in which an umbrella was abruptly opened near the horse. Before startle, the horses were subjected to a 20-minute session of acupuncture in acupoints GV1, HT7, GV20, and BL52 (ACUP) and in nonpoints (NP) or left undisturbed (CTL). For analysis of the heart rate variability, ultrashort-term (64 s) heart rate series were interpolated (4 Hz) and divided into 256-point segments and the spectra integrated into low (LF; 0.01-0.07 Hz; index of sympathetic modulation) and high (HF; 0.07-0.50 Hz; index of parasympathetic modulation) frequency bands. Acupuncture (ACUP) changed the sympathovagal balance with a shift towards parasympathetic modulation, reducing the prompt startle-induced increase in LF/HF and reducing cortisol levels 30 min after startle. However, acupuncture elicited no changes in behavioural parameters.

3.
J Endocrinol ; 216(2): 181-93, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23151359

RESUMO

Sirtuin 1 (SIRT1), a NAD(+)-dependent deacetylase, has been connected to beneficial effects elicited by calorie restriction. Physiological adaptation to starvation requires higher activity of SIRT1 and also the suppression of thyroid hormone (TH) action to achieve energy conservation. Here, we tested the hypothesis that those two events are correlated and that TH may be a regulator of SIRT1 expression. Forty-eight-hour fasting mice exhibited reduced serum TH and increased SIRT1 protein content in liver and brown adipose tissue (BAT), and physiological thyroxine replacement prevented or attenuated the increment of SIRT1 in liver and BAT of fasted mice. Hypothyroid mice exhibited increased liver SIRT1 protein, while hyperthyroid ones showed decreased SIRT1 in liver and BAT. In the liver, decreased protein is accompanied by reduced SIRT1 activity and no alteration in its mRNA. Hyperthyroid and hypothyroid mice exhibited increases and decreases in food intake and body weight gain respectively. Food-restricted hyperthyroid animals (pair-fed to euthyroid group) exhibited liver and BAT SIRT1 protein levels intermediary between euthyroid and hyperthyroid mice fed ad libitum. Mice with TH resistance at the liver presented increased hepatic SIRT1 protein and activity, with no alteration in Sirt1 mRNA. These results suggest that TH decreases SIRT1 protein, directly and indirectly, via food ingestion control and, in the liver, this reduction involves TRß. The SIRT1 reduction induced by TH has important implication to integrated metabolic responses to fasting, as the increase in SIRT1 protein requires the fasting-associated suppression of TH serum levels.


Assuntos
Sirtuína 1/metabolismo , Hormônios Tireóideos/sangue , Animais , Peso Corporal/genética , Peso Corporal/fisiologia , Restrição Calórica , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Hipertireoidismo/genética , Hipertireoidismo/metabolismo , Hipotireoidismo/genética , Hipotireoidismo/metabolismo , Camundongos , Camundongos Transgênicos , Sirtuína 1/genética , Receptores beta dos Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/metabolismo
4.
J Endocrinol ; 207(3): 319-28, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20870710

RESUMO

Resveratrol (Res) has been associated with protective effects against oxidative stress. This study evaluated the effect of Res over lipid peroxidation, antioxidant defense, hepatic sirtuin 1 (SIRT1), which up-regulates antioxidant enzymes, and copper/zinc superoxide dismutase (Cu/Zn SOD) in adult offspring whose mothers were protein restricted during lactation. Lactating Wistar rats were divided into control (C) group, which were fed a normal diet (23% protein), and low-protein and high-carbohydrate (LPHC) group, which were fed a diet containing 8% protein. After weaning (21 days), C and LPHC offspring were fed a normal diet until they were 180 days old. At the 160th day, animals were separated into four groups as follows: control, control+Res, LPHC, and LPHC+Res. Resveratrol was given for 20 days (30  mg/kg per day by gavage). LPHC animals showed a higher total antioxidant capacity (TAC) without change in lipid peroxidation and SIRT1 expression. The treatment with Res increased TAC only in the control group without effect on lipid peroxidation and SIRT1. LPHC animals treated with Res had lower lipid peroxidation and higher protein and mRNA expression of SIRT1 without any further increase in TAC. No significant difference in liver Cu/Zn SOD expression was observed among the groups. In conclusion, maternal protein restriction during lactation programs the offspring for a higher antioxidant capacity, and these animals seem to respond to Res treatment with a lower lipid peroxidation and higher hepatic SIRT1 expression that we did not observe in the Res-treated controls. It is probable that the protective effect can be attributed to Res activating SIRT1, only in the LPHC-programmed group.


Assuntos
Antioxidantes/farmacologia , Dieta com Restrição de Proteínas , Peroxidação de Lipídeos/efeitos dos fármacos , Sirtuína 1/metabolismo , Estilbenos/farmacologia , Animais , Animais Recém-Nascidos , Antioxidantes/análise , Glicemia/efeitos dos fármacos , Feminino , Insulina/sangue , Resistência à Insulina/fisiologia , Lipídeos/sangue , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Ratos , Ratos Wistar , Resveratrol , Sirtuína 1/análise , Superóxido Dismutase/análise
5.
J Endocrinol ; 199(2): 235-42, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18755884

RESUMO

We examined the acute effects of endocannabinoid, anandamide, and of synthetic cannabinoid receptor antagonist, AM251[N-(piperidin-1-yl)-1-(2,4-dichlorophenyl)-5-(4-chlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide], on TSH, thyroxine (T(4)), and triiodothyronine (T(3)) secretions. Euthyroid male rats showed a 42% decrease in serum TSH, 2 h after a single i.p. injection of 0.02, but not 0.2 mg/kg body weight (BW), anandamide, accompanied by a 39% reduction in serum T(4), without alteration in serum T(3). At 0.5 and 1 h, these serum hormones showed no significant change. Hypothyroid rats showed a 35% reduction in serum TSH (P<0.01), 2 h after anandamide injection, which had no effect on hyperthyroid rats. In both thyroid states, no modification of serum thyroid hormones was observed. Intraperitoneal injection of 0.17 or 1.7 mg/kg BW AM251 in euthyroid rats caused, 1.5 h later, 1.7-fold or 4.3-fold increase in serum TSH respectively, without changing thyroid hormones. Stimulatory effect of 0.17 mg/kg BW AM251 and inhibitory effect of anandamide was abolished in the group injected with AM251 followed by an anandamide injection, 30 min later. Intracerebroventricular injection of 20 ng (but not 200 ng) anandamide induced a decrease in serum TSH at 60 min after injection, which tended to disappear at 120 min. Anterior pituitary explants presented significant reduction in TSH release in the presence of 10(-7) M anandamide in incubation medium, which was blocked by 10(-7) M AM251. In conclusion, anandamide has the ability to acutely inhibit TSH release in eu- and hypothyroid rats, acting at the hypothalamus-pituitary axis. Since, in addition, the cannabinoid receptor antagonist AM251 increased TSH release, we suggest that endocannabinoid system has a role as negative regulator of TSH secretion.


Assuntos
Ácidos Araquidônicos/farmacologia , Moduladores de Receptores de Canabinoides/farmacologia , Endocanabinoides , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Tireotropina/metabolismo , Animais , Ácidos Araquidônicos/administração & dosagem , Moduladores de Receptores de Canabinoides/administração & dosagem , Hipertireoidismo/sangue , Hipertireoidismo/tratamento farmacológico , Hipotireoidismo/sangue , Hipotireoidismo/tratamento farmacológico , Técnicas In Vitro , Masculino , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Alcamidas Poli-Insaturadas/administração & dosagem , Radioimunoensaio , Ratos , Ratos Wistar , Tireotropina/sangue , Tiroxina/sangue , Tri-Iodotironina/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...