Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(26): 268101, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38215366

RESUMO

I report on the experimental confirmation that critical percolation statistics underlie the ordering kinetics of twisted nematic phases in the Allen-Cahn universality class. Soon after the ordering starts from a homogeneous disordered phase and proceeds toward a broken Z_{2}-symmetry phase, the system seems to be attracted to the random percolation fixed point at a special timescale t_{p}. At this time, exact formulas for crossing probabilities in percolation theory agree with the corresponding probabilities in the experimental data. The ensuing evolution for the number density of hull-enclosed areas is described by an exact expression derived from a percolation model endowed with curvature-driven interface motion. Scaling relation for hull-enclosed areas versus perimeters reveals that the fractal percolation geometry is progressively morphed into a regular geometry up to the order of the classical coarsening length. In view of its universality and experimental possibilities, the study opens a path for exploring percolation keystones in the realm of nonequilibrium, phase-ordering systems.

2.
Phys Rev E ; 106(4-1): 044105, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36397468

RESUMO

After a sudden quench from the disordered high-temperature T_{0}→∞ phase to a final temperature well below the critical point T_{F}≪T_{c}, the nonconserved order parameter dynamics of the two-dimensional ferromagnetic Ising model on a square lattice initially approaches the critical percolation state before entering the coarsening regime. This approach involves two timescales associated with the first appearance (at time t_{p_{1}}>0) and stabilization (at time t_{p}>t_{p_{1}}) of a giant percolation cluster, as previously reported. However, the microscopic mechanisms that control such timescales are not yet fully understood. In this paper, to study their role on each time regime after the quench (T_{F}=0), we distinguish between spin flips that decrease the total energy of the system from those that keep it constant, the latter being parametrized by the probability p. We show that observables such as the cluster size heterogeneity H(t,p) and the typical domain size ℓ(t,p) have no dependence on p in the first time regime up to t_{p_{1}}. Furthermore, when energy-decreasing flips are forbidden while allowing constant-energy flips, the kinetics is essentially frozen after the quench and there is no percolation event whatsoever. Taken together, these results indicate that the emergence of the first percolating cluster at t_{p_{1}} is completely driven by energy decreasing flips. However, the time for stabilizing a percolating cluster is controlled by the acceptance probability of constant-energy flips: t_{p}(p)∼p^{-1} for p≪1 (at p=0, the dynamics gets stuck in a metastable state). These flips are also the relevant ones in the later coarsening regime where dynamical scaling takes place. Because the phenomenology on the approach to the percolation point seems to be shared by many 2D systems with a nonconserved order parameter dynamics (and certain cases of conserved ones as well), our results may suggest a simple and effective way to set, through the dynamics itself, t_{p_{1}} and t_{p} in such systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA