Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 753: 109919, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307316

RESUMO

Ketoconazole (Ke) is an important antifungal drug, and two of its diphenylphosphinemethyl derivatives (KeP: Ph2PCH2-Ke and KeOP: Ph2P(O)CH2-Ke) have shown improved antifungal activity, namely against a yeast strain lacking ergosterol, suggesting alternative modes of action for azole compounds. In this context, the interactions of these compounds with a model of the cell membrane were investigated, using POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) large unilamellar vesicles and taking advantage of the intrinsic fluorescence of Ke, KeP and KeOP. Steady-state fluorescence spectra and anisotropy, including partition and aggregation studies, as well as fluorescence lifetime measurements, were carried out. In addition, the ability of the compounds to increase membrane permeability was assessed through carboxyfluorescein leakage. The membrane/water mole fraction partition coefficients (Kp,x): (3.31 ± 0.36) x105, (8.31 ± 1.60) x105 and (4.66 ± 0.72) x106, for Ke, KeP and KeOP, respectively, show that all three compounds have moderate to high affinity for the lipid bilayer. Moreover, KeP, and particularly KeOP interact more efficiently with POPC bilayers than Ke, which correlates well with their in vitro antifungal activity. Furthermore, although the three compounds disturb the lipid bilayer, KeOP is the quickest and most efficient one. Hence, the higher affinity and ability to permeabilize the membrane of KeOP when compared to that of KeP, despite the higher lipophilicity of the latter, points to an important role of Ph2P(O)CH2- oxygen. Overall, this work suggests that membrane interactions are important for the antifungal activity of these azoles and should be considered in the design of new therapeutic agents.


Assuntos
Antifúngicos , Cetoconazol , Antifúngicos/farmacologia , Cetoconazol/farmacologia , Bicamadas Lipídicas , Fosfatidilcolinas
2.
Bioinorg Chem Appl ; 2023: 6669394, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808953

RESUMO

Piano-stool-{CpRu} complexes containing 1,3,5-triaza-7-phosphaadamantane (PTA), N-methyl-1,3,5-triaza-7-phosphaadamantane (mPTA), and 3,7-dimethyl-1,3,7-triaza-5-phosphabyciclo[3.3.1]nonane (dmoPTA) were evaluated as drugs against breast cancer. The evaluated compounds include two new examples of this family, the complexes [RuCp(DMSO-κS)(HdmoPTA)(PPh3)](CF3SO3)2 (8) and [RuCp(PPh3)2-µ-dmoPTA-1κP-2κ2N,N'-PdCl2](CF3SO3) (11), which have been synthesized and characterized by NMR, IR, and single-crystal X-ray diffraction. The cytotoxic activity of compounds was evaluated against MDA-MB-231 breast cancer cells, and the three most active complexes were further tested against the hormone-dependent MCF-7 breast cancer cell line. Their cell death mechanism and ruthenium uptake were also evaluated, as well as their binding ability to human serum albumin.

3.
J Inorg Biochem ; 248: 112355, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37579689

RESUMO

The studies on metal complexes as potential antifungals are of growing interest because they may be the answer to increasingly effective defense mechanisms. Herein we present two new copper(I) iodide or thiocyanide complexes with 2,9-dimethyl-1,10-phenanthroline (dmp) and diphenylphosphine derivative of 1-(4-methoxyphenyl)piperazine (4MP): [CuI(dmp)4MP] (1-4MP) and [CuNCS(dmp)4MP] (2-4MP) - their synthesis, as well as structural and spectroscopic characteristics. Interestingly, while 4MP and its oxide derivative (4MOP) show a very low or no activity against all tested Candida albicans strains (MIC50 ≥ 200 µM against CAF2-1 - laboratory control strain, DSY1050 - mutant without transporters Cdr1, Cdr2, Mdr1; isogenic for CAF2-1, and fluconazole resistant clinical isolates), for 1-4MP and 2-4MP MIC50 values were 0.4 µM, independently on the complex and strain tested. Determination of the viability of NHDF-Ad (Normal Adult Human Dermal Fibroblasts) cell line treated with 1-4MP and 2-4MP showed that for both complexes there was only a 20% reduction in the concentration range » to 2 × MIC50 and the 70% at 4 × MIC50. Subsequently, the MLCT based luminescence of the complexes in aqueous media allowed to record the confocal micrographs of 1-4MP in the cells. The results show that it is situated most likely in the vacuoles (C. albicans) or lysosomes (NHDF-Ad).


Assuntos
Cobre , Farmacóforo , Humanos , Cobre/química , Testes de Sensibilidade Microbiana , Antifúngicos/química , Candida albicans/metabolismo
4.
Mol Pharm ; 20(2): 918-928, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36700695

RESUMO

Increasing evidence suggests a critical role of lipids in both the mechanisms of toxicity and resistance of cells to platinum(II) complexes. In particular, cisplatin and other analogues were reported to interact with lipids and transiently promote lipid phase changes both in the bulk membranes and in specific membrane domains. However, these processes are complex and not fully understood. In this work, cisplatin and its cationic species formed at pH 7.4 in low chloride concentrations were tested for their ability to induce phase changes in model membranes with different lipid compositions. Fluorescent probes that partition to different lipid phases were used to report on the fluidity of the membrane, and a leakage assay was performed to evaluate the effect of cisplatin in the permeability of these vesicles. The results showed that platinum(II) complex effects on membrane fluidity depend on membrane lipid composition and properties, promoting a stronger decrease in the fluidity of membranes containing gel phase. Moreover, at high concentration, these complexes were prone to alter the permeability of lipid membranes without inducing their collapse or aggregation.


Assuntos
Cisplatino , Bicamadas Lipídicas , Bicamadas Lipídicas/química , Cisplatino/farmacologia , Platina/farmacologia , Fluidez de Membrana , Permeabilidade
5.
J Inorg Biochem ; 238: 112058, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36375357

RESUMO

With the aim to incorporate pharmacophore motifs into the Ru(II)-polypyridyl framework, compounds [Ru(II)(1,10-phenantroline)2(2-(2-pyridyl)benzo[b]thiophene)](CF3SO3)2 (1) and [Ru(II)(1,10-phenantroline)2(2-(2-pyridyl)benzimidazole)](CF3SO3)2 (2) were prepared, characterized and tested for their antitumor potential. The solid-state structure of the compounds was confirmed by single-crystal X-ray diffraction analysis. The solution behavior of both complexes was investigated, namely their solubility, stability, and lipophilicity in physiological mimetic conditions, as well as an eventual uptake by passive diffusion. In vitro anticancer activity of the complexes on ovarian and different colon cancer cells and apoptosis induction by the complexes were studied. A slow transformation process was observed for complex 1 in aqueous solution when exposed to sunlight, while complex 2 undergoes deprotonation (pKa = 7.59). The lipophilicity of this latter complex depends strongly on the pH and ionic strength. In contrast, 1 is rather hydrophilic under various conditions. Complex 1 was highly cytotoxic on Colo-205 human colon (IC50 = 7.87 µM) and A2780 ovarian (IC50 = 2.2 µM) adenocarcinoma cell lines, while 2 displayed moderate anticancer activity (30.9 µM and 18.0 µM, respectively). The complexes induced late apoptosis and necrosis. Only a weak binding of the complexes to human serum albumin, the main transport protein in blood serum, was found. However, a more significant binding to calf thymus DNA was observed in UV-visible titrations and fluorometric dye displacement studies. Detailed analysis of fluorescence lifetime data collected for the latter systems reveals not only the partial intercalation of the complexes, but goes beyond the usual simplified interpretations.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias Ovarianas , Rutênio , Humanos , Feminino , Rutênio/química , Linhagem Celular Tumoral , Tiofenos , Antineoplásicos/química , Benzimidazóis/farmacologia , Complexos de Coordenação/química
6.
Front Pharmacol ; 13: 868545, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600870

RESUMO

The upsurge of multidrug-resistant tuberculosis has toughened the challenge to put an end to this epidemic by 2030. In 2020 the number of deaths attributed to tuberculosis increased as compared to 2019 and newly identified multidrug-resistant tuberculosis cases have been stably close to 3%. Such a context stimulated the search for new and more efficient antitubercular compounds, which culminated in the QSAR-oriented design and synthesis of a series of isoniazid derivatives active against Mycobacterium tuberculosis. From these, some prospective isonicotinoyl hydrazones and isonicotinoyl hydrazides are studied in this work. To evaluate if the chemical derivatizations are generating compounds with a good performance concerning several in vitro assays, their cytotoxicity against human liver HepG2 cells was determined and their ability to bind human serum albumin was thoroughly investigated. For the two new derivatives presented in this study, we also determined their lipophilicity and activity against both the wild type and an isoniazid-resistant strain of Mycobacterium tuberculosis carrying the most prevalent mutation on the katG gene, S315T. All compounds were less cytotoxic than many drugs in clinical use with IC50 values after a 72 h challenge always higher than 25 µM. Additionally, all isoniazid derivatives studied exhibited stronger binding to human serum albumin than isoniazid itself, with dissociation constants in the order of 10-4-10-5 M as opposed to 10-3 M, respectively. This suggests that their transport and half-life in the blood stream are likely improved when compared to the parent compound. Furthermore, our results are a strong indication that the N' = C bond of the hydrazone derivatives of INH tested is essential for their enhanced activity against the mutant strain of M. tuberculosis in comparison to both their reduced counterparts and INH.

7.
Front Mol Biosci ; 9: 1059116, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36660430

RESUMO

This work addresses the possible role of the cell membrane in the molecular mechanism of action of two salan-type ruthenium complexes that were previously shown to be active against human tumor cells, namely [Ru(III)(L1)(PPh3)Cl] and [Ru(III)(L2)(PPh3)Cl] (where L1 is 6,6'-(1R,2R)-cyclohexane-1,2-diylbis(azanediyl)bis(methylene)bis(3-methoxyphenol); and L2 is 2,2'-(1R,2R)-cyclohexane-1,2-diylbis(azanediyl)bis(methylene)bis(4-methoxyphenol)). One-component membrane models were first used, a disordered fluid bilayer of dioleoylphosphatodylcholine (DOPC), and an ordered rigid gel bilayer of dipalmitoylphosphatidylcholine. In addition, two quaternary mixtures of phosphatidylcholine, phosphatidylethanolamine, sphingomyelin and cholesterol were used to mimic the lipid composition either of mammalian plasma membrane (1:1:1:1 mol ratio) or of a cancer cell line membrane (36.2:23.6:6.8:33.4 mol ratio). The results show that both salan ligands L1 and L2 bind relatively strongly to DOPC bilayers, but without significantly affecting their structure. The ruthenium complexes have moderate affinity for DOPC. However, their impact on the membranes was notable, leading to a significant increase in the permeability of the lipid vesicles. None of the compounds compromised liposome integrity, as revealed by dynamic light scattering. Fluorescence spectroscopy studies revealed changes in the biophysical properties of all membrane models analyzed in the presence of the two complexes, which promoted an increased fluidity and water penetration into the lipid bilayer in the one-component systems. In the quaternary mixtures, one of the complexes had an analogous effect (increasing water penetration), whereas the other complex reorganized the liquid ordered and liquid disordered domains. Thus, small structural differences in the metal ligands may lead to different outcomes. To better understand the effect of these complexes in cancer cells, the membrane dipole potential was also measured. For both Ru complexes, an increase in the dipole potential was observed for the cancer cell membrane model, while no alteration was detected on the non-cancer plasma membrane model. Our results show that the action of the Ru(III) complexes tested involves changes in the biophysical properties of the plasma membrane, and that it also depends on membrane lipid composition, which is frequently altered in cancer cells when compared to their normal counterparts.

8.
Artigo em Inglês | MEDLINE | ID: mdl-33892149

RESUMO

Niemann-Pick disease type C (NPC) is a complex and rare pathology, which is mainly associated to mutations in the NPC1 gene. This disease is phenotypically characterized by the abnormal accumulation of multiple lipid species in the acidic compartments of the cell. Due to the complexity of stored material, a clear molecular mechanism explaining NPC pathophysiology is still not established. Abnormal sphingosine accumulation was suggested as the primary factor involved in the development of NPC, followed by the accumulation of other lipid species. To provide additional mechanistic insight into the role of sphingosine in NPC development, fluorescence spectroscopy and microscopy were used to study the biophysical properties of biological membranes using different cellular models of NPC. Addition of sphingosine to healthy CHO-K1 cells, in conditions where other lipid species are not yet accumulated, caused a rapid decrease in plasma membrane and lysosome membrane fluidity, suggesting a direct effect of sphingosine rather than a downstream event. Changes in membrane fluidity caused by addition of sphingosine were partially sustained upon impaired trafficking and metabolization of cholesterol in these cells, and could recapitulate the decrease in membrane fluidity observed in NPC1 null Chinese Hamster Ovary (CHO) cells (CHO-M12) and in cells with pharmacologically induced NPC phenotype (treated with U18666A). In summary, these results show for the first time that the fluidity of the membranes is altered in models of NPC and that these changes are in part caused by sphingosine, supporting the role of this lipid in the pathophysiology of NPC.


Assuntos
Doença de Niemann-Pick Tipo C/patologia , Esfingolipídeos/metabolismo , Esfingosina/metabolismo , Animais , Células CHO , Membrana Celular/metabolismo , Colesterol/metabolismo , Cricetulus , Endossomos/metabolismo , Lisossomos/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , Fenótipo
9.
Sci Rep ; 11(1): 4443, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627687

RESUMO

The concept of Pan-Assay Interference Compounds (PAINS) is regarded as a threat to the recognition of the broad bioactivity of natural products. Based on the established relationship between altered membrane dipole potential and transmembrane protein conformation and function, we investigate here polyphenols' ability to induce changes in cell membrane dipole potential. Ultimately, we are interested in finding a tool to prevent polyphenol PAINS-type behavior and produce compounds less prone to untargeted and promiscuous interactions with the cell membrane. Di-8-ANEPPS fluorescence ratiometric measurements suggest that planar lipophilic polyphenols-phloretin, genistein and resveratrol-act by decreasing membrane dipole potential, especially in cholesterol-rich domains such as lipid rafts, which play a role in important cellular processes. These results provide a mechanism for their labelling as PAINS through their ability to disrupt cell membrane homeostasis. Aiming to explore the role of C-glucosylation in PAINS membrane-interfering behavior, we disclose herein the first synthesis of 4-glucosylresveratrol, starting from 5-hydroxymethylbenzene-1,3-diol, via C-glucosylation, oxidation and Horner-Wadsworth-Emmons olefination, and resynthesize phloretin and genistein C-glucosides. We show that C-glucosylation generates compounds which are no longer able to modify membrane dipole potential. Therefore, it can be devised as a strategy to generate bioactive natural product derivatives that no longer act as membrane dipole potential modifiers. Our results offer a new technology towards rescuing bioactive polyphenols from their PAINS danger label through C-C ligation of sugars.

10.
Methods Mol Biol ; 2187: 223-245, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32770510

RESUMO

The study of the structure and dynamics of membrane domains in vivo is a challenging task. However, major advances could be achieved through the application of microscopic and spectroscopic techniques coupled with the use of model membranes, where the relations between lipid composition and the type, amount and properties of the domains present can be quantitatively studied.This chapter provides protocols to study membrane organization and visualize membrane domains by fluorescence microscopy both in artificial membrane and living cell models of Gaucher Disease (GD ). We describe a bottom-up multiprobe methodology, which enables understanding how the specific lipid interactions established by glucosylceramide, the lipid that accumulates in GD , affect the biophysical properties of model and cell membranes, focusing on its ability to influence the formation, properties and organization of lipid raft domains. In this context, we address the preparation of (1) raft-mimicking giant unilamellar vesicles labeled with a combination of fluorophores that allow for the visualization and comprehensive characterization of those membrane domains and (2) human fibroblasts exhibiting GD phenotype to assess the biophysical properties of biological membrane in living cells using fluorescence microscopy.


Assuntos
Biofísica/métodos , Bicamadas Lipídicas/metabolismo , Microdomínios da Membrana/metabolismo , Microscopia de Fluorescência/métodos , Membrana Celular/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Doença de Gaucher/metabolismo , Glucosilceramidas/metabolismo , Humanos , Pele/metabolismo , Lipossomas Unilamelares/metabolismo
11.
Methods Mol Biol ; 2187: 247-269, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32770511

RESUMO

The use of steady-state and time-resolved fluorescence spectroscopy to study sterol and sphingolipid-enriched lipid domains as diverse as the ones found in mammalian and fungal membranes is herein described. We first address how to prepare liposomes that mimic raft-containing membranes of mammalian cells and how to use fluorescence spectroscopy to characterize the biophysical properties of these membrane model systems. We further illustrate the application of Förster resonance energy transfer (FRET) to study nanodomain reorganization upon interaction with small bioactive molecules, phenolic acids, an important group of phytochemical compounds. This methodology overcomes the resolution limits of conventional fluorescence microscopy allowing for the identification and characterization of lipid domains at the nanoscale.We continue by showing how to use fluorescence spectroscopy in the biophysical analysis of more complex biological systems, namely the plasma membrane of Saccharomyces cerevisiae yeast cells and the necessary adaptations to the filamentous fungus Neurospora crassa , evaluating the global order of the membrane, sphingolipid-enriched domains rigidity and abundance, and ergosterol-dependent properties.


Assuntos
Biofísica/métodos , Membrana Celular/metabolismo , Mamíferos/metabolismo , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/metabolismo , Espectrometria de Fluorescência/métodos , Animais , Ergosterol/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Neurospora crassa/metabolismo , Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/metabolismo , Esteróis/metabolismo
12.
FEBS Lett ; 594(22): 3698-3718, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33141925

RESUMO

Plasma membrane carries out multiple physiological functions that require its dynamic and tightly regulated organization into specialized domains of different size, stability, and lipid/protein composition. Sphingolipids are a group of lipids in which the plasma membrane is particularly enriched, thus being crucial for its structure and function. A specific type of sphingolipid-enriched plasma membrane domains, where ergosterol is depleted and lipids are tightly packed in a rigid gel phase, has recently been found in several fungal species, including yeasts and moulds. After presenting the main biophysical features of gel domains and the experimental method for their detection in the fungal plasma membrane, we review these sphingolipid-enriched gel domains and illustrate their importance to both unicellular and multicellular fungi. First, the biophysical properties of the fungal sphingolipid-enriched domains will be analysed taking into consideration the plasma membrane sphingolipidome. Next, their possible biological roles will be summarized, including their relations with plasma membrane compartments and involvement in stress responses. Moreover, since the plasma membrane is a target for several antifungal compounds, a biophysical connection between sphingolipid-enriched domains and antifungal action will be explored.


Assuntos
Membrana Celular/química , Fungos/fisiologia , Esfingolipídeos/isolamento & purificação , Sequência de Carboidratos , Esfingolipídeos/metabolismo
13.
J Med Chem ; 63(20): 11663-11690, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32959649

RESUMO

Despite the rapidly increasing number of patients suffering from type 2 diabetes, Alzheimer's disease, and diabetes-induced dementia, there are no disease-modifying therapies that are able to prevent or block disease progress. In this work, we investigate the potential of nature-inspired glucosylpolyphenols against relevant targets, including islet amyloid polypeptide, glucosidases, and cholinesterases. Moreover, with the premise of Fyn kinase as a paradigm-shifting target in Alzheimer's drug discovery, we explore glucosylpolyphenols as blockers of Aß-induced Fyn kinase activation while looking into downstream effects leading to Tau hyperphosphorylation. Several compounds inhibit Aß-induced Fyn kinase activation and decrease pTau levels at 10 µM concentration, particularly the per-O-methylated glucosylacetophloroglucinol and the 4-glucosylcatechol dibenzoate, the latter inhibiting also butyrylcholinesterase and ß-glucosidase. Both compounds are nontoxic with ideal pharmacokinetic properties for further development. This work ultimately highlights the multitarget nature, fine structural tuning capacity, and valuable therapeutic significance of glucosylpolyphenols in the context of these metabolic and neurodegenerative disorders.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucosídeos/síntese química , Polifenóis/síntese química , Proteínas Proto-Oncogênicas c-fyn/antagonistas & inibidores , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Colinesterases/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Descoberta de Drogas/métodos , Glucosídeos/química , Glucosídeos/farmacologia , Glicosídeo Hidrolases/antagonistas & inibidores , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Estrutura Molecular , Fosforilação , Polifenóis/química , Polifenóis/farmacologia
14.
Biomolecules ; 10(7)2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630112

RESUMO

The number of cases of failure in the treatment of infections associated with resistant bacteria is on the rise, due to the decreasing efficacy of current antibiotics. Notably, 7α-Acetoxy-6ß-hydroxyroyleanone (AHR), a diterpene isolated from different Plectranthus species, showed antibacterial activity, namely against Methicillin-resistant Staphylococcus aureus (MRSA) strains. The high antibacterial activity and low cytotoxicity render this natural compound an interesting alternative against resistant bacteria. The aim of this study is to understand the mechanism of action of AHR on MRSA, using the MRSA/Vancomycin-intermediate S. aureus (VISA) strain CIP 106760, and to study the AHR effect on lipid bilayers and on the cell wall. Although AHR interacted with lipid bilayers, it did not have a significant effect on membrane passive permeability. Alternatively, bacteria treated with this royleanone displayed cell wall disruption, without revealing cell lysis. In conclusion, the results gathered so far point to a yet undescribed mode of action that needs further investigation.


Assuntos
Diterpenos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Vancomicina/efeitos dos fármacos , Membrana Externa Bacteriana , Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos
15.
Biomolecules ; 10(6)2020 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-32517183

RESUMO

The relevance of mannosyldiinositolphosphorylceramide [M(IP)2C] synthesis, the terminal complex sphingolipid class in the yeast Saccharomyces cerevisiae, for the lateral organization of the plasma membrane, and in particular for sphingolipid-enriched gel-like domains, was investigated by fluorescence spectroscopy and microscopy. We also addressed how changing the complex sphingolipid profile in the plasma membrane could influence the membrane compartments (MC) containing either the arginine/ H+ symporter Can1p (MCC) or the proton ATPase Pma1p (MCP). To achieve these goals, wild-type (wt) and ipt1Δ cells, which are unable to synthesize M(IP)2C accumulating mannosylinositolphosphorylceramide (MIPC), were compared. Living cells, isolated plasma membrane and giant unilamellar vesicles reconstituted from plasma membrane lipids were labelled with various fluorescent membrane probes that report the presence and organization of distinct lipid domains, global order, and dielectric properties. Can1p and Pma1p were tagged with GFP and mRFP, respectively, in both yeast strains, to evaluate their lateral organization using confocal fluorescence intensity and fluorescence lifetime imaging. The results show that IPT1 deletion strongly affects the rigidity of gel-like domains but not their relative abundance, whereas no significant alterations could be perceived in ergosterolenriched domains. Moreover, in these cells lacking M(IP)2C, a clear alteration in Pma1p membrane distribution, but no significant changes in Can1p distribution, were observed. Thus, this work reinforces the notion that sphingolipid-enriched domains distinct from ergosterol-enriched regions are present in the S. cerevisiae plasma membrane and suggests that M(IP)2C is important for a proper hydrophobic chain packing of sphingolipids in the gel-like domains of wt cells. Furthermore, our results strongly support the involvement of sphingolipid domains in the formation and stability of the MCP, possibly being enriched in this compartment.


Assuntos
Membrana Celular/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Esfingolipídeos/química , Glicoesfingolipídeos/química , Domínios Proteicos , Saccharomyces cerevisiae/citologia
16.
Front Cell Dev Biol ; 8: 337, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32596234

RESUMO

Here, biophysical properties of membranes enriched in three metabolically related sterols are analyzed both in vitro and in vivo. Unlike cholesterol and ergosterol, the common metabolic precursor zymosterol is unable to induce the formation of a liquid ordered (l o) phase in model lipid membranes and can easily accommodate in a gel phase. As a result, Zym has a marginal ability to modulate the passive membrane permeability of lipid vesicles with different compositions, contrary to cholesterol and ergosterol. Using fluorescence-lifetime imaging microscopy of an aminostyryl dye in living mammalian and yeast cells we established a close parallel between sterol-dependent membrane biophysical properties in vivo and in vitro. This approach unraveled fundamental differences in yeast and mammalian plasma membrane organization. It is often suggested that, in eukaryotes, areas that are sterol-enriched are also rich in sphingolipids, constituting highly ordered membrane regions. Our results support that while cholesterol is able to interact with saturated lipids, ergosterol seems to interact preferentially with monounsaturated phosphatidylcholines. Taken together, we show that different eukaryotic kingdoms developed unique solutions for the formation of a sterol-rich plasma membrane, a common evolutionary trait that accounts for sterol structural diversity.

17.
Dalton Trans ; 49(25): 8528-8539, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32525156

RESUMO

The search for new antifungals is very important because the large genetic variation of pathogenic organisms has resulted in the development of increasingly effective defense mechanisms by microorganisms. Metal complexes as potential drugs are nowadays gaining interest, because they are characterized by accessible redox states of metal centers and a plethora of easily modifiable geometries. In this work we present two new copper(i) iodide or thiocyanide complexes with 2,9-dimethyl-1,10-phenanthroline (dmp) and a diphenylphosphane derivative of ketoconazole (KeP), where a ketoconazole acetyl group is replaced by the -CH2PPh2 unit, [CuI(dmp)KeP] (1-KeP) and [CuNCS(dmp)KeP] (2-KeP) - their synthesis and structural characteristics. The analysis of the intrinsic fluorescence of the ketoconazole moiety in the coordinated KeP molecule revealed that the copper(i) central atom does not act as a quencher and the observed decrease of fluorescence intensity is a result of a strong inner filter effect caused by the presence of the CuXdmp unit. Moreover, the complexes exhibit a remarkable MLCT (metal-ligand charge transfer) based phosphorescence with the emission maximum at 600-615 nm in aqueous media, which probably results from the formation of dimers and higher order oligomers in the most polar solutions. Both complexes proved to be promising antifungal agents towards Candida albicans, showing a relatively high efficiency towards the fluconazole resistant strains with -CDR1 and CDR2 or MDR1 efflux pump overexpression, which suggests that they overcome at least partially these defense mechanisms. Simulations of docking to the cytochrome P450 14α-demethylase (the azoles' primary molecular target) suggested that the compounds studied were rather incapable of competitively inhibiting this enzyme, unlike ketoconazole and the KeP ligand. On the other hand, the phosphorescence in aqueous solutions allowed recording the confocal micrographs of the complexes which showed that both of them are situated in spherical structures inside the cells, most likely in the vacuoles.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Imagem Óptica , Adulto , Antifúngicos/síntese química , Antifúngicos/química , Candida albicans/citologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cobre/química , Cobre/farmacologia , Inibidores das Enzimas do Citocromo P-450/síntese química , Inibidores das Enzimas do Citocromo P-450/química , Humanos , Cetoconazol/química , Cetoconazol/farmacologia , Medições Luminescentes , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Fenantrolinas/química , Fenantrolinas/farmacologia , Fosfinas/química , Fosfinas/farmacologia
18.
Sci Rep ; 9(1): 16214, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31700024

RESUMO

Four new derivatives of ketoconazole (Ke) were synthesized: diphenylphosphane (KeP), and phosphane chalcogenides: oxide (KeOP), sulphide (KeSP) and selenide (KeSeP). These compounds proved to be promising antifungal compounds towards Saccharomyces cerevisiae and Candida albicans, especially in synergy with fluconazole. Simulations of docking to the cytochrome P450 14α-demethylase (azoles' primary molecular target) proved that the new Ke derivatives are capable of inhibiting this enzyme by binding to the active site. Cytotoxicity towards hACSs (human adipose-derived stromal cells) of the individual compounds was studied and the IC50 values were higher than the MIC50 for C. albicans and S. cerevisiae. KeP and KeOP increased the level of the p21 gene transcript but did not change the level of p53 gene transcript, a major regulator of apoptosis, and decreased the mitochondrial membrane potential. Taken together, the results advocate that the new ketoconazole derivatives have a similar mechanism of action and block the lanosterol 14α-demethylase and thus inhibit the production of ergosterol in C. albicans membranes.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Compostos de Bifenilo/química , Cetoconazol/química , Cetoconazol/farmacologia , Tecido Adiposo/citologia , Antifúngicos/toxicidade , Apoptose/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Cetoconazol/toxicidade , Saccharomyces cerevisiae/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos
19.
Rev. bras. ciênc. mov ; 27(3): 170-185, jul.-set. 2019. tab
Artigo em Português | LILACS | ID: biblio-1016233

RESUMO

O estudo acerca do coaching esportivo, apesar de escasso no Brasil, vem mostrando um amplo desenvolvimento nos últimos anos. Estudos foram realizados principalmente no contexto do desempenho, no entanto, nenhum destes abordou o desenvolvimento de treinadores brasileiros medalhistas olímpicos. Este estudo objetivou analisar as situações de aprendizagens realizadas ao longo da vida de treinadores brasileiros medalhistas olímpicos com o intuito de compreender quais destas possibilitaram aos treinadores construir e desenvolver os conhecimentos necessários para se engajar efetivamente na sua prática profissional. Utilizou-se um delineamento descritivo qualitativo do tipo múltiplos estudos de caso. Os participantes do estudo foram selecionados intencionalmente respeitando os seguintes critérios: treinadores brasileiros medalhistas nos Jogos Olímpicos do Rio de Janeiro; mais de dez anos de experiência como treinador esportivo; disposição para participar do estudo. Aceitaram fazer parte do estudo, 5 treinadores brasileiros, sendo três treinadores de esportes individuais e dois treinadores de esportes coletivos. Os dados foram coletados a partir da aplicação da Linha do Tempo e de entrevista semiestruturada. A análise dos dados foi realizada a partir dos preceitos da Análise de Conteúdo. Os resultados informaram a utilização de uma variedade de situações de aprendizagens mediadas, não mediadas e internas. Sendo assim, possibilitaram a identificação de um panorama de formação e desenvolvimento dos treinadores brasileiros medalhistas olímpicos, qual seja: a) possuem experiência enquanto atletas nas modalidades que atuam; b) possuem prática enquanto treinadores em outros contextos de prática; c) são formados em Educação Física; d) frequentaram cursos especializados de curta duração; e) realizam ações de prática reflexiva deliberada....(AU)


The study about sports coaching, although scarce in Brazil, has been showing a wide development in recent years. Studies were conducted mainly in the context of performance, however, none of these addressed the development of Brazilian Olympic medalist coaches. This study aimed at analyzing the lifelong learning situations of Brazilian Olympic medalists coaches in order to understand which of these enabled coaches to build and develop the knowledge needed to effectively engage their professional practice. A qualitative descriptive design of multiple case studies was used. The study participants were intentionally selected according to the following criteria: Brazilian medalists coaches at the Rio de Janeiro Olympic Games; more than ten years of experience as a sports coach; willingness to participate in the study. Five Brazilian coaches were accepted as being part of the study, being three individual sports coaches and two collective sports coaches. The data were collected from the application of the Timeline and semi-structured interview. The analysis of the data was carried out from the precepts of the Content Analysis. The results informed the use of a variety of mediated, unmediated and internal learning situations. Thus, they enabled the identification of a formation and development panorama of the Brazilian Olympic medalists trainers, which are: a) they have experience as athletes in the modalities that act; b) practice as coaches in other contexts of practice; c) are trained in Physical Education; d) attended specialized short courses; e) carry out actions of deliberate reflexive practice....(AU)


Assuntos
Humanos , Masculino , Feminino , Adolescente , Adulto , Educação Física e Treinamento , Crescimento e Desenvolvimento , Capacitação de Professores , Aprendizagem
20.
Langmuir ; 35(20): 6771-6781, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31006246

RESUMO

Catechins are molecules with potential use in different pathologies such as diabetes and cancer, but their pharmaceutical applications are often hindered by their instability in the bloodstream. This issue can be circumvented using liposomes as their nanocarriers for in vivo delivery. In this work, we studied the molecular details of (-)-epigallocatechin-3-gallate (EGCG) interacting with 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) monolayer/bilayer systems to understand the catechin loading ability and liposome stability, using experimental and computational techniques. The molecular dynamics simulations show the EGCG molecules deep inside the lipid bilayer, positioned below the lipid ester groups, generating a concentration-dependent lipid condensation. This effect was also inferred from the surface pressure isotherms of DMPC monolayers. In the polarization-modulated infrared reflection absorption spectra assays, the predominant effect at higher concentrations of EGCG (e.g., 20 mol %) was an increase in lipid tail disorder. The steady-state fluorescence data confirmed this disordered state, indicating that the catechin-induced liposome aggregation outweighs the condensation effects. Therefore, by adding more than 10 mol % EGCG to the liposomes, a destabilization of the vesicles occurs with the ensuing release of entrapped catechins. The loading capacity for DMPC seems to be limited by its disordered lipid arrangements, typical of a fluid phase. To further increase the clinical usefulness of liposomes, lipid bilayers with more stable and organized assemblies should be employed to avoid aggregation at large concentrations of catechin.


Assuntos
Catequina/análogos & derivados , Dimiristoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Catequina/química , Lipossomos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...