Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(4): 2991-3004, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38666917

RESUMO

Frankincense is produced by Boswellia trees, which can be found throughout the Middle East and parts of Africa and Asia. Boswellia serrata extract has been shown to have anti-cancer, anti-inflammatory, and antimicrobial effects. Periodontitis is an oral chronic inflammatory disease that affects nearly half of the US population. We investigated the antimicrobial effects of B. serrata extract on two oral pathogens associated with periodontitis. Using the minimum inhibitory concentration and crystal violet staining methods, we demonstrated that Porphyromonas gingivalis growth and biofilm formation were impaired by treatment with B. serrata extracts. However, the effects on Fusobacterium nucleatum growth and biofilm formation were not significant. Using quantification of colony-forming units and microscopy techniques, we also showed that concentrations of B. serrata that were not toxic for host cells decreased intracellular P. gingivalis infection in human gingival epithelial cells. Our results show antimicrobial activity of a natural product extracted from Boswellia trees (B. serrata) against periodontopathogens. Thus, B. serrata has the potential for preventing and/or treating periodontal diseases. Future studies will identify the molecular components of B. serrata extracts responsible for the beneficial effects.

2.
J Xray Sci Technol ; 32(1): 87-103, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37980595

RESUMO

BACKGROUND: Periodontal disease affects over 50% of the global population and is characterized by gingivitis as the initial sign. One dental health issue that may contribute to the development of periodontal disease is foreign body gingivitis (FBG), which can result from exposure to some kinds of foreign metal particles from dental products or food. OBJECTIVE: We design a novel, portable, affordable, multispectral X-ray and fluorescence optical microscopic imaging system dedicated to detecting and differentiating metal oxide particles in dental pathological tissues. A novel denoising algorithm is applied. We verify the feasibility and optimize the performance of the imaging system with numerical simulations. METHODS: The designed imaging system has a focused X-ray tube with tunable energy spectra and thin scintillator coupled with an optical microscope as detector. A simulated soft tissue phantom is embedded with 2-micron thick metal oxide discs as the imaged object. GATE software is used to optimize the systematic parameters such as energy bandwidth and X-ray photon number. We have also applied a novel denoising method, Noise2Sim with a two-layer UNet structure, to improve the simulated image quality. RESULTS: The use of an X-ray source operating with an energy bandwidth of 5 keV, X-ray photon number of 108, and an X-ray detector with a 0.5 micrometer pixel size in a 100 by 100-pixel array allowed for the detection of particles as small as 0.5 micrometer. With the Noise2Sim algorithm, the CNR has improved substantially. A typical example is that the Aluminum (Al) target's CNR is improved from 6.78 to 9.72 for the case of 108 X-ray photons with the Chromium (Cr) source of 5 keV bandwidth. CONCLUSIONS: Different metal oxide particles were differentiated using Contrast-to-Noise ratio (CNR) by utilizing four different X-ray spectra.


Assuntos
Gengivite , Doenças Periodontais , Humanos , Raios X , Radiografia , Fótons , Imagens de Fantasmas
3.
Front Immunol ; 14: 1122586, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006312

RESUMO

The innate immune system in vertebrates and invertebrates relies on conserved receptors and ligands, and pathways that can rapidly initiate the host response against microbial infection and other sources of stress and danger. Research into the family of NOD-like receptors (NLRs) has blossomed over the past two decades, with much being learned about the ligands and conditions that stimulate the NLRs and the outcomes of NLR activation in cells and animals. The NLRs play key roles in diverse functions, ranging from transcription of MHC molecules to initiation of inflammation. Some NLRs are activated directly by their ligands, while other ligands may have indirect effects on the NLRs. New findings in coming years will undoubtedly shed more light on molecular details involved in NLR activation, as well as the physiological and immunological outcomes of NLR ligation.


Assuntos
Imunidade Inata , Proteínas NLR , Animais , Ligantes , Inflamação , Proteínas de Transporte
4.
ArXiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36866227

RESUMO

There is increasing recognition that oral health affects overall health and systemic diseases. Nonetheless it remains challenging to rapidly screen patient biopsies for signs of inflammation or the pathogens or foreign materials that elicit the immune response. This is especially true in conditions such as foreign body gingivitis (FBG), where the foreign particles are often difficult to detect. Our long term goal is to establish a method to determine if the inflammation of the gingival tissue is due to the presence of a metal oxide, with emphasis on elements that were previously reported in FBG biopsies, such as silicon dioxide, silica, and titanium dioxide whose persistent presence can be carcinogenic. In this paper, we proposed to use multiple energy X-ray projection imaging to detect and to differentiate different metal oxide particles embedded inside gingival tissues. To simulate the performance of the imaging system, we have used GATE simulation software to mimic the proposed system and to obtain images with different systematic parameters. The simulated parameters include the X-ray tube anode metal, the X-ray spectra bandwidth, the X-ray focal spot size, the X-ray photon number, and the X-ray dector pixel. We have also applied the de-noising algorithm to obtain better Contrast-to-noise ratio (CNR). Our results indicate that it is feasible to detect metal particles as small as 0.5 micrometer in diameter when we use a Chromium anode target with an energy bandwidth of 5 keV, an X-ray photon number of 10^8, and an X-ray detector with a pixel size of 0.5 micrometer and 100 by 100 pixels. We have also found that different metal particles could be differentiated from the CNR at four different X-ray anodes and spectra. These encouraging initial results will guide our future imaging system design.

5.
Molecules ; 27(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35807419

RESUMO

Boswellia trees, found throughout the Middle East and parts of Africa and Asia, are the source of frankincense oil. Since antiquity, frankincense has been traded as a precious commodity, but it has also been used for the treatment of chronic disease, inflammation, oral health, and microbial infection. More recently, the bioactive components of Boswellia trees have been identified and characterized for their effects on cancer, microbial infection (especially infection by oral pathogens), and inflammation. Most studies have focused on cell lines, but more recent research has also investigated effects in animal models of disease. As natural products are considered to be safer than synthetic drugs, there is growing interest in further developing the use of substances such as frankincense oil for therapeutic treatment.


Assuntos
Boswellia , Franquincenso , Animais , Franquincenso/farmacologia , Inflamação/tratamento farmacológico , Saúde Bucal , Árvores
6.
Curr Res Microb Sci ; 2: 100023, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34841314

RESUMO

We examined the involvement of the P2 × 7 receptor and the canonical and noncanonical inflammasomes in the control of single-species or dual-species infection by the periodontal bacteria Porphyromonas gingivalis and Fusobacterium nucleatum in cells and mice. Stimulation of the P2 × 7 receptor leads to activation of the canonical NLRP3 inflammasome and activation of caspase-1, which leads to cleavage of pro-IL-1ß to IL-1ß, a key cytokine in the host inflammatory response in periodontal disease. The non-canonical inflammasome pathway involves caspase-11. Thus, wildtype (WT), P2 × 7-/-, caspase-11-/- and caspase-1/11-/- mice were co-infected with both bacterial species. In parallel, bone marrow-derived macrophages (BMDMs) from WT mice and the different knockout mice were infected with P. gingivalis and/or F. nucleatum, and treated or not with extracellular ATP, which is recognized by P2 × 7. F. nucleatum infection alone promoted secretion of IL-1ß in BMDMs. Conversely, the canonical pathway involving P2 × 7 and caspase-1 was necessary for secretion of IL-1ß in BMDMs infected with P. gingivalis and in the mandible of mice coinfected with P. gingivalis and F. nucleatum. The P2 × 7 pathway can limit bacterial load in single-species and dual-species infection with P. gingivalis and F. nucleatum in BMDMs and in mice. The non-canonical pathway involving caspase-11 was required for secretion of IL-1ß induced by F. nucleatum infection in BMDMs, without treatment with ATP. Caspase-11 was also required for induction of cell death during infection with F. nucleatum and contributed to limiting bacterial load during F. nucleatum infection in BMDMs and in the gingival tissue of mice coinfected with P. gingivalis and F. nucleatum. Together, these data suggest that the P2 × 7-caspase-1 and caspase-11 pathways are involved in the immune response against infection by P. gingivalis and F. nucleatum, respectively.

7.
Int J Mol Sci ; 22(14)2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34299289

RESUMO

A large body of evidence shows the harmful effects of cigarette smoke to oral and systemic health. More recently, a link between smoking and susceptibility to coronavirus disease 2019 (COVID-19) was proposed. COVID-19 is due to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which uses the receptor ACE2 and the protease TMPRSS2 for entry into host cells, thereby infecting cells of the respiratory tract and the oral cavity. Here, we examined the effects of cigarette smoke on the expression of SARS-CoV-2 receptors and infection in human gingival epithelial cells (GECs). We found that cigarette smoke condensates (CSC) upregulated ACE2 and TMPRSS2 expression in GECs, and that CSC activated aryl hydrocarbon receptor (AhR) signaling in the oral cells. ACE2 was known to mediate SARS-CoV-2 internalization, and we demonstrate that CSC treatment potentiated the internalization of SARS-CoV-2 pseudovirus in GECs in an AhR-dependent manner. AhR depletion using small interference RNA decreased SARS-CoV-2 pseudovirus internalization in CSC-treated GECs compared with control GECs. Our study reveals that cigarette smoke upregulates SARS-CoV-2 receptor expression and infection in oral cells. Understanding the mechanisms involved in SARS-CoV-2 infection in cells of the oral cavity may suggest therapeutic interventions for preventing viral infection and transmission.


Assuntos
COVID-19/metabolismo , COVID-19/virologia , Fumar Cigarros/efeitos adversos , SARS-CoV-2/efeitos dos fármacos , Fumar/efeitos adversos , Internalização do Vírus/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Fumar Cigarros/fisiopatologia , Suscetibilidade a Doenças , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Gengiva/metabolismo , Gengiva/virologia , Humanos , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores Virais/metabolismo , Mucosa Respiratória/metabolismo , SARS-CoV-2/fisiologia , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Fumar/metabolismo
8.
Front Immunol ; 12: 645834, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897694

RESUMO

Extracellular nucleotides are important mediators of activation, triggering various responses through plasma membrane P2 and P1 receptors. P2 receptors are further subdivided into ionotropic P2X receptors and G protein-coupled P2Y receptors. P2X4 is an ATP-gated cation channel broadly expressed in most tissues of the body. Within the P2X family, P2X4 has a unique subcellular distribution, being preferentially localized in lysosomes. In these organelles, high ATP concentrations do not trigger P2X4 because of the low pH. However, when the pH increases to 7.4, P2X4 can be stimulated by intra-lysosomal ATP, which is in its active, tetra-anionic form. Elucidation of P2X4, P2X3 and P2X7 structures has shed some light on the functional differences between these purinergic receptors. The potential interaction between P2X4 and P2X7 has been extensively studied. Despite intensive effort, it has not been possible yet to determine whether P2X4 and P2X7 interact as heterotrimers or homotrimers at the plasma membrane. However, several publications have shown that functional interactions between P2X4 and P2X7 do occur. Importantly, these studies indicate that P2X4 potentiates P2X7-dependent activation of inflammasomes, leading to increased release of IL-1ß and IL-18. The role of P2X4 in various diseases could be beneficial or deleterious even though the pathophysiological mechanisms involved are still poorly defined. However, in diseases whose physiopathology involves activation of the NLRP3 inflammasome, P2X4 was found to exacerbate severity of disease. The recent production of monoclonal antibodies specific for the human and mouse P2X4, some of which are endowed with agonist or antagonist properties, raises the possibility that they could be used therapeutically. Analysis of single nucleotide polymorphisms of the human P2RX4 gene has uncovered the association of P2RX4 gene variants with susceptibility to several human diseases.


Assuntos
Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X4/fisiologia , Animais , Anticorpos Monoclonais/farmacologia , Degranulação Celular , Encefalomielite Autoimune Experimental/etiologia , Etanol/farmacologia , Humanos , Inflamassomos/fisiologia , Inflamação/etiologia , Mastócitos/fisiologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores de Antígenos de Linfócitos T/fisiologia , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X7/química , Receptores Purinérgicos P2X7/fisiologia
9.
Biomed J ; 44(3): 252-259, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33039378

RESUMO

Conventional cigarette smoke harms nearly every organ of the body and is the leading cause of death in the United States and in the world. Decades of research have associated conventional cigarette smoke with several diseases and death. Heavily marketed, electronic nicotine delivery systems such as electronic cigarettes (e-cigarettes) are available in a variety of flavors and high nicotine concentrations. In 2019, a severe lung disease outbreak linked to e-cigarette use led to several deaths, which was called electronic-cigarette or vaping product use-associated lung injury (EVALI). Even though the trend of e-cigarette use among teens continues to increase, information on the effects of e-cigarette smoke on oral and overall health are still scarce. This review discusses the possible health effects due to unregulated e-cigarette use, as well as the health effects of second-hand smoke and third-hand smoke on non-smokers.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Adolescente , Aerossóis/efeitos adversos , Surtos de Doenças , Humanos , Pulmão , Estados Unidos , Vaping/efeitos adversos
10.
Mediators Inflamm ; 2019: 7241312, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31341421

RESUMO

Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum) are Gram-negative anaerobic bacteria possessing several virulence factors that make them potential pathogens associated with periodontal disease. Periodontal diseases are chronic inflammatory diseases of the oral cavity, including gingivitis and periodontitis. Periodontitis can lead to tooth loss and is considered one of the most prevalent diseases worldwide. P. gingivalis and F. nucleatum possess virulence factors that allow them to survive in hostile environments by selectively modulating the host's immune-inflammatory response, thereby creating major challenges to host cell survival. Studies have demonstrated that bacterial infection and the host immune responses are involved in the induction of periodontitis. The NLRP3 inflammasome and its effector molecules (IL-1ß and caspase-1) play roles in the development of periodontitis. We and others have reported that the purinergic P2X7 receptor plays a role in the modulation of periodontal disease and intracellular pathogen control. Caspase-4/5 (in humans) and caspase-11 (in mice) are important effectors for combating bacterial pathogens via mediation of cell death and IL-1ß release. The exact molecular events of the host's response to these bacteria are not fully understood. Here, we review innate and adaptive immune responses induced by P. gingivalis and F. nucleatum infections and discuss the possibility of manipulations of the immune response as therapeutic strategies. Given the global burden of periodontitis, it is important to develop therapeutic targets for the prophylaxis of periodontopathogen infections.


Assuntos
Infecções por Bacteroidaceae/microbiologia , Infecções por Fusobacterium/microbiologia , Fusobacterium nucleatum/patogenicidade , Doenças Periodontais/microbiologia , Porphyromonas gingivalis/patogenicidade , Imunidade Adaptativa , Animais , Infecções por Bacteroidaceae/terapia , Caspase 1/metabolismo , Sobrevivência Celular , Infecções por Fusobacterium/imunologia , Infecções por Fusobacterium/terapia , Humanos , Imunidade Inata , Inflamassomos , Inflamação , Interleucina-1beta/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doenças Periodontais/imunologia , Doenças Periodontais/terapia , Virulência
11.
Microb Cell ; 6(4): 197-208, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30956972

RESUMO

Chlamydia pneumoniae is an airborne, Gram-negative, obligate intracellular bacterium which causes human respiratory infections and has been associated with atherosclerosis. Because individuals with periodontitis are at greater risk for atherosclerosis as well as respiratory infections, we in-vestigated the role of C. pneumoniae in inflammation and periodontal dis-ease. We found that C. pneumoniae was more frequently found in subgingival dental plaque obtained from periodontally diseased sites of the mouth versus healthy sites. The known periodontal pathogens, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, were also found in the plaque. In addition, C. pneumoniae could efficiently invade human gingival epithelial cells (GECs) in vitro, causing translocation of NF-κB to the nucleus along with increased secretion of mature IL-1ß cytokine. Supernatants collected from C. pneumoniae-infected GECs showed increased activation of caspase-1 protein, which was significantly reduced when nlrp3 gene expression was silenced using shRNA lentiviral vectors. Our results demonstrate that C. pneumoniae was found in higher levels in periodontitis patients compared to control pa-tients. Additionally, C. pneumoniae could infect GECs, leading to inflammation caused by activation of NF-κB and the NLRP3 inflammasome. We propose that the presence of C. pneumoniae in subgingival dental plaque may contribute to periodontal disease and could be used as a potential risk indicator of perio-dontal disease.

12.
Biomed J ; 42(1): 27-35, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30987702

RESUMO

A growing body of literature suggests that there is a link between periodontitis and systemic diseases. These diseases include cardiovascular disease, gastrointestinal and colorectal cancer, diabetes and insulin resistance, and Alzheimer's disease, as well as respiratory tract infection and adverse pregnancy outcomes. The presence of periodontal pathogens and their metabolic by-products in the mouth may in fact modulate the immune response beyond the oral cavity, thus promoting the development of systemic conditions. A cause-and-effect relationship has not been established yet for most of the diseases, and the mediators of the association are still being identified. A better understanding of the systemic effects of oral microorganisms will contribute to the goal of using the oral cavity to diagnose and possibly treat non-oral systemic disease.


Assuntos
Doenças Cardiovasculares/imunologia , Diabetes Mellitus/imunologia , Inflamação/imunologia , Periodontite/imunologia , Feminino , Humanos , Gravidez , Resultado da Gravidez , Fatores de Risco
13.
Immunobiology ; 224(1): 50-59, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30429052

RESUMO

The Gram-negative bacterium Porphyromonas gingivalis is strongly associated with periodontitis. We previously demonstrated that P2X7 receptor activation by extracellular ATP (eATP) triggers elimination of intracellular pathogens, such as Leishmania amazonensis, Toxoplasma gondii and Chlamydia trachomatis. We also showed that eATP-induced IL-1ß secretion via the P2X7 receptor is impaired by P. gingivalis fimbriae. Furthermore, enhanced P2X7 receptor expression was detected in the maxilla of P. gingivalis-orally infected mice as well as in human periodontitis patients. Here, we examined the effect of P2X7-, caspase-1/11- and IL-1 receptor-mediated responses during P. gingivalis infection. P2X7 receptor played a large role in controlling P. gingivalis infection and P. gingivalis-induced recruitment of inflammatory cells, especially neutrophils. In addition, IL-1ß secretion was detected at different time points only when P2X7 receptor was expressed and in the presence of eATP treatment ex vivo. Activation of P2X7 receptor and IL-1 receptor by eATP and IL-1ß, respectively, promoted P. gingivalis elimination in macrophages. Interestingly, eATP-induced P. gingivalis killing was inhibited by the IL-1 receptor antagonist (IL-1RA), consistent with autocrine activation of the IL-1 receptor for P. gingivalis elimination. In vivo, caspase-1/11 and IL-1 receptor were also required for bacterial clearance, leukocyte recruitment and IL-1ß production after P. gingivalis infection. Our data demonstrate that the P2X7-IL-1 receptor axis activation is required for effective innate immune responses against P. gingivalis infection.


Assuntos
Infecções por Bacteroidaceae/imunologia , Leucócitos/imunologia , Macrófagos/imunologia , Porphyromonas gingivalis/fisiologia , Receptores Purinérgicos P2X7/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Comunicação Autócrina , Caspase 1/genética , Caspase 1/metabolismo , Caspases/genética , Caspases/metabolismo , Caspases Iniciadoras , Movimento Celular , Células Cultivadas , Modelos Animais de Doenças , Humanos , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Receptores Purinérgicos P2X7/genética , Transdução de Sinais
14.
Biomed J ; 41(3): 184-193, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-30080658

RESUMO

BACKGROUND: Fusobacterium nucleatum is a Gram-negative anaerobic bacterium associated with periodontal disease. Some oral bacteria, like Porphyromonas gingivalis, evade the host immune response by inhibiting inflammation. On the other hand, F. nucleatum triggers inflammasome activation and release of danger-associated molecular patterns (DAMPs) in infected gingival epithelial cells. METHODS: In this study, we characterized the pro-inflammatory response to F. nucleatum oral infection in BALB/c mice. Western blots and ELISA were used to measure cytokine and DAMP (HMGB1) levels in the oral cavity after infection. Histology and flow cytometry were used to observe recruitment of immune cells to infected tissue and pathology. RESULTS: Our results show increased expression and production of pro-inflammatory cytokines during infection. Furthermore, we observe that F. nucleatum infection leads to recruitment of macrophages in different tissues of the oral cavity. Infection also contributes to osteoclast recruitment, which could be involved in the observed bone resorption. CONCLUSIONS: Overall, our findings suggest that F. nucleatum infection rapidly induces inflammation, release of DAMPs, and macrophage infiltration in gingival tissues and suggest that osteoclasts may drive bone resorption at early stages of the inflammatory process.


Assuntos
Reabsorção Óssea/etiologia , Polpa Dentária/imunologia , Infecções por Fusobacterium/imunologia , Fusobacterium nucleatum , Macrófagos/fisiologia , Doenças da Boca/imunologia , Animais , Movimento Celular , Citocinas/biossíntese , Citocinas/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Osteoclastos/fisiologia
15.
Microbes Infect ; 20(9-10): 615-625, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29024797

RESUMO

NOD-like receptors (NLRs) play a large role in regulation of host innate immunity, yet their role in periodontitis remains to be defined. NLRX1, a member of the NLR family that localizes to mitochondria, enhances mitochondrial ROS (mROS) generation. mROS can activate the NLRP3 inflammasome, yet the role of NLRX1 in NLRP3 inflammasome activation has not been examined. In this study, we revealed the mechanism by which NLRX1 positively regulates ATP-induced NLRP3 inflammasome activation through mROS in gingival epithelial cells (GECs). We found that depletion of NLRX1 by shRNA attenuated ATP-induced mROS generation and redistribution of the NLRP3 inflammasome adaptor protein, ASC. Furthermore, depletion of NLRX1 inhibited Fusobacterium nucleatum infection-activated caspase-1, suggesting that it also inhibits the NLRP3 inflammasome. Conversely, NLRX1 also acted as a negative regulator of NF-κB signaling and IL-8 expression. Thus, NLRX1 stimulates detection of the pathogen F. nucleatum via the inflammasome, while dampening cytokine production. We expect that commensals should not activate the inflammasome, and NLRX1 should decrease their ability to stimulate expression of pro-inflammatory cytokines such as IL-8. Therefore, NLRX1 may act as a potential switch with regards to anti-microbial responses in healthy or diseased states in the oral cavity.


Assuntos
Infecções por Fusobacterium/metabolismo , Inflamassomos/metabolismo , Proteínas Mitocondriais/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Caspase 1/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , Células Epiteliais/metabolismo , Fusobacterium nucleatum/fisiologia , Expressão Gênica , Gengiva , Humanos , Interleucina-8/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , RNA Interferente Pequeno , Espécies Reativas de Oxigênio/metabolismo
16.
Front Immunol ; 8: 1257, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29075257

RESUMO

Toxoplasma gondii (T. gondii) is the protozoan parasite that causes toxoplasmosis, a potentially fatal disease to immunocompromised patients, and which affects approximately 30% of the world's population. Previously, we showed that purinergic signaling via the P2X7 receptor contributes to T. gondii elimination in macrophages, through reactive oxygen species (ROS) production and lysosome fusion with the parasitophorous vacuole. Moreover, we demonstrated that P2X7 receptor activation promotes the production of anti-parasitic pro-inflammatory cytokines during early T. gondii infection in vivo. However, the cascade of signaling events that leads to parasite elimination via P2X7 receptor activation remained to be elucidated. Here, we investigated the cellular pathways involved in T. gondii elimination triggered by P2X7 receptor signaling, during early infection in macrophages. We focused on the potential role of the inflammasome, a protein complex that can be co-activated by the P2X7 receptor, and which is involved in the host immune defense against T. gondii infection. Using peritoneal and bone marrow-derived macrophages from knockout mice deficient for inflammasome components (NLRP3-/-, Caspase-1/11-/-, Caspase-11-/-), we show that the control of T. gondii infection via P2X7 receptor activation by extracellular ATP (eATP) depends on the canonical inflammasome effector caspase-1, but not on caspase-11 (a non-canonical inflammasome effector). Parasite elimination via P2X7 receptor and inflammasome activation was also dependent on ROS generation and pannexin-1 channel. Treatment with eATP increased IL-1ß secretion from infected macrophages, and this effect was dependent on the canonical NLRP3 inflammasome. Finally, treatment with recombinant IL-1ß promoted parasite elimination via mitochondrial ROS generation (as assessed using Mito-TEMPO). Together, our results support a model where P2X7 receptor activation by eATP inhibits T. gondii growth in macrophages by triggering NADPH-oxidase-dependent ROS production, and also by activating a canonical NLRP3 inflammasome, which increases IL-1ß production (via caspase-1 activity), leading to mitochondrial ROS generation.

17.
Biomed J ; 39(4): 251-260, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27793267

RESUMO

Despite recent advances unraveling mechanisms of host-pathogen interactions in innate immunity, the participation of purinergic signaling in infection-driven inflammation remains an emerging research field with many unanswered questions. As one of the most-studied oral pathogens, Porphyromonas gingivalis is considered as a keystone pathogen with a central role in development of periodontal disease. This pathogen needs to evade immune-mediated defense mechanisms and tolerate inflammation in order to survive in the host. In this review, we summarize evidence showing that purinergic signaling modulates P. gingivalis survival and cellular immune responses, and discuss the role played by inflammasome activation and cell death during P. gingivalis infection.


Assuntos
Inflamassomos/imunologia , Porphyromonas gingivalis/imunologia , Humanos , Imunidade Inata , Inflamação , Transdução de Sinais
18.
Life Sci ; 94(1): 74-82, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24239638

RESUMO

AIMS: Stress mechanisms paradoxically contribute to allergic episodes in humans and mice. Glucocorticoids (GC) and interleukin (IL)-5 synergically upregulate murine bone-marrow eosinophil production. Here we explored the role of endogenous GC in allergen-stimulated bone-marrow eosinophil production in ovalbumin-sensitized/challenged mice. MAIN METHODS: In BALB/c or C57BL/6 mice, sensitized and intranasally challenged with ovalbumin, we monitored eosinophil numbers in freshly harvested or cultured bone-marrow, and plasma corticosterone levels. Metyrapone (MET) was used to inhibit GC synthesis, and RU486 to block GC actions. In sensitized mice challenged intraperitoneally, we examined the relationship between eosinophilia of bone-marrow and peritoneal cavity, in the absence or presence of RU486. In experiments involving in vivo neutralization of tumor necrosis factor-α (TNF) by specific antibodies, or using mice which lack functional type I TNF receptors (TNFRI), we evaluated the relationship between TNF blockade, corticosterone levels, RU486 or MET treatment and challenge-induced bone-marrow eosinophilia. KEY FINDINGS: RU486 or MET pretreatments abolished challenge-induced increases in eosinophil numbers in bone-marrow (in vivo and ex vivo), and in the peritoneal cavity. MET, but not RU486, prevented the challenge-induced increase in corticosterone levels. Challenge-induced bone-marrow eosinophilia and corticosterone surge were abolished in TNFRI-deficient mice. Anti-TNF-treatment very effectively prevented challenge-induced bone-marrow eosinophilia, in the absence of RU486 or MET, but had no independent effect in the presence of either drug. SIGNIFICANCE: Endogenous GC was essential for allergen challenge-induced increases in eosinophil numbers inside bone-marrow. This effect required TNF and TNFRI, which suggests an immunoendocrine mechanism.


Assuntos
Eosinofilia/metabolismo , Eosinófilos/metabolismo , Glucocorticoides/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Medula Óssea/metabolismo , Corticosterona/metabolismo , Feminino , Glucocorticoides/biossíntese , Inflamação/fisiopatologia , Metirapona/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mifepristona/farmacologia , Ovalbumina/imunologia , Cavidade Peritoneal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...