Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 45(11): 3132-9, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11600368

RESUMO

GW 471552, GW 471558, GW 479821, GW 515716, GW 570009, and GW 587270 are members of a new family of sordarin derivatives called azasordarins. The in vitro activities of these compounds were evaluated against clinical isolates of yeasts, including Candida albicans, Candida non-albicans, and Cryptococcus neoformans strains. Activities against Pneumocystis carinii, Aspergillus spp., less common molds, and dermatophytes were also investigated. Azasordarin derivatives displayed significant activities against the most clinically important Candida species, with the exception of C. krusei. Against C. albicans, including fluconazole-resistant strains, MICs at which 90% of the isolates tested are inhibited (MIC(90)s) were 0.002 microg/ml with GW 479821, 0.015 microg/ml with GW 515716 and GW 587270, and 0.06 microg/ml with GW 471552, GW 471558, and GW 570009. The MIC(90)s of GW 471552, GW 471558, GW 479821, GW 515716, GW 570009, and GW 587270 were 0.12, 0.12, 0.03, 0.06, 0.12, and 0.06 microg/ml, respectively, against C. tropicalis and 4, 0.25, 0.06, 0.25, 0.5, and 0.5 microg/ml, respectively, against C. glabrata. In addition, some azasordarin derivatives (GW 479821, GW 515716, GW 570009, and GW 58720) were active against C. parapsilosis, with MIC(90)s of 2, 4, 4, and 1 microg/ml, respectively. The compounds were extremely potent against P. carinii, showing 50% inhibitory concentrations of 16 microg/ml). These azasordarin derivatives also showed significant activity against emerging fungal pathogens, which affect immunocompromised patients, such as Rhizopus arrhizus, Blastoschizomyces capitatus, and Geotrichum clavatum. Against these organisms, the MICs of GW 587270 ranged from 0.12 to 1 microg/ml, those of GW 479821 and GW 515716 ranged from 0.12 to 2 microg/ml, and those of GW 570009 ranged from 0.12 to 4 microg/ml. Against Fusarium oxysporum, Scedosporium apiospermum, Absidia corymbifera, Cunninghamella bertholletiae, and dermatophytes, GW 587270 was the most active compound, with MICs ranging from 4 to 16 microg/ml. Against Aspergillus spp., the MICs of the compounds tested were higher than 16 microg/ml. The in vitro selectivity of azasordarins was investigated by cytotoxicity studies performed with five cell lines and primary hepatocytes. Concentrations of compound required to achieve 50% inhibition of the parameter considered (Tox(50)s) of GW 570009, GW 587270, GW 479281, and GW 515716 in the cell lines ranged from 60 to 96, 49 to 62, 24 to 36, and 16 to 38 microg/ml, respectively. The cytotoxicity values of GW 471552 and GW 471558 were >100 microg/ml for all cell lines tested. Tox(50)s on hepatocytes were in the following order: GW 471558 > GW 471552 > GW 570009 > GW 587270 > GW 515716 > GW 479821, with values ranging from higher than 100 microg/ml to 23 microg/ml. The cytotoxicity results obtained with fully metabolizing rat hepatocytes were in total agreement with those obtained with cell lines. In summary, the in vitro activities against important pathogenic fungi and the selectivity demonstrated in mammalian cell lines justify additional studies to determine the clinical usefulness of azasordarins.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Antifúngicos/farmacologia , Fungos/efeitos dos fármacos , Animais , Arthrodermataceae/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultura , Humanos , Indenos , Masculino , Testes de Sensibilidade Microbiana , Pneumocystis/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Células Tumorais Cultivadas , Leveduras/efeitos dos fármacos
2.
Antimicrob Agents Chemother ; 42(11): 2863-9, 1998 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9797217

RESUMO

GM 193663, GM 211676, GM 222712, and GM 237354 are new semisynthetic derivatives of the sordarin class. The in vitro antifungal activities of GM 193663, GM 211676, GM 222712, and GM 237354 against 111 clinical yeast isolates of Candida albicans, Candida kefyr, Candida glabrata, Candida parapsilosis, Candida krusei, and Cryptococcus neoformans were compared. The in vitro activities of some of these compounds against Pneumocystis carinii, 20 isolates each of Aspergillus fumigatus and Aspergillus flavus, and 30 isolates of emerging less-common mold pathogens and dermatophytes were also compared. The MICs of GM 193663, GM 211676, GM 222712, and GM 237354 at which 90% of the isolates were inhibited (MIC90s) were 0.03, 0.03, 0.004, and 0.015 microg/ml, respectively, for C. albicans, including strains with decreased susceptibility to fluconazole; 0.5, 0.5, 0.06, and 0.12 microg/ml, respectively, for C. tropicalis; and 0.004, 0.015, 0.008, and 0.03 microg/ml, respectively, for C. kefyr. GM 222712 and GM 237354 were the most active compounds against C. glabrata, C. parapsilosis, and Cryptococcus neoformans. Against C. glabrata and C. parapsilosis, the MIC90s of GM 222712 and GM 237354 were 0.5 and 4 microg/ml and 1 and 16 microg/ml, respectively. The MIC90s of GM 222712 and GM 237354 against Cryptococcus neoformans were 0.5 and 0.25 microg/ml, respectively. GM 193663, GM 211676, GM 222712, and GM 237354 were extremely active against P. carinii. The efficacies of sordarin derivatives against this organism were determined by measuring the inhibition of the uptake and incorporation of radiolabelled methionine into newly synthesized proteins. All compounds tested showed 50% inhibitory concentrations of <0.008 microg/ml. Against A. flavus and A. fumigatus, the MIC90s of GM 222712 and GM 237354 were 1 and 32 microg/ml and 32 and >64 microg/ml, respectively. In addition, GM 237354 was tested against the most important emerging fungal pathogens which affect immunocompromised patients. Cladosporium carrioni, Pseudallescheria boydii, and the yeast-like fungi Blastoschizomyces capitatus and Geotrichum clavatum were the most susceptible of the fungi to GM 237354, with MICs ranging from /=2 microg/ml. In summary, we concluded that some sordarin derivatives, such as GM 222712 and GM 237354, showed excellent in vitro activities against a wide range of pathogenic fungi, including Candida spp., Cryptococcus neoformans, P. carinii, and some filamentous fungi and emerging invasive fungal pathogens.


Assuntos
Antifúngicos/farmacologia , Fungos/efeitos dos fármacos , Pneumocystis/efeitos dos fármacos , Trifosfato de Adenosina/análise , Humanos , Indenos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
4.
J Virol ; 65(5): 2572-7, 1991 May.
Artigo em Inglês | MEDLINE | ID: mdl-1850030

RESUMO

The entry of animal viruses into cells is associated with permeabilization of the infected cells to protein toxins such as alpha-sarcin (C. Fernández-Puentes and L. Carrasco, Cell 20:769-775, 1980). This phenomenon has been referred to as "the early permeabilization by animal viruses" (L. Carrasco, Virology 113:623-629, 1981). A number of inhibitors of poliovirus growth such as WIN 51711 6-(3,4-dichlorophenoxy)-3-(ethylthio)-2-pyridincarbonitrile (DEPC) and Ro 09-0410 specifically block the uncoating step of poliovirus but have no effect on attachment or entry of poliovirus particles into cells. These agents are potent inhibitors of the early permeabilization induced by poliovirus to the toxin alpha-sarcin. Thus, the uncoating of poliovirus is required for the permeabilization of cell membranes to proteins. The increased entry of labeled heparin promoted by virus entry is not blocked by these agents, indicating that poliovirus binds to its receptor and is internalized along with heparin in endosomes in the presence of WIN 51711, DEPC, or Ro 09-0410. We conclude that the delivery to the cytoplasm of some molecules that coenter with virion particles does not take place if the uncoating process is hindered.


Assuntos
Antivirais/farmacologia , Permeabilidade da Membrana Celular , Endorribonucleases , Proteínas Fúngicas/metabolismo , Poliovirus/fisiologia , Membrana Celular/efeitos dos fármacos , Células Cultivadas , Chalcona/análogos & derivados , Chalcona/farmacologia , Chalconas , Células HeLa , Heparina/metabolismo , Humanos , Isoxazóis/farmacologia , Fosfatidilcolinas/farmacologia , Poliovirus/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Vírion/efeitos dos fármacos , Vírion/metabolismo
5.
Antimicrob Agents Chemother ; 34(6): 1259-61, 1990 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-2168147

RESUMO

We investigated the mode of action of 6-(3,4-dichlorophenoxy-3-(ethylthio)-2-pyridincarbonitrile against poliovirus. This agent effectively blocked the synthesis of poliovirus proteins and RNA when it was added at the beginning of infection. Poliovirus attachment and internalization into HeLa cells were not inhibited in the presence of the compound; poliovirus uncoating was the target of its activity.


Assuntos
Antivirais/farmacologia , Capsídeo/efeitos dos fármacos , Poliovirus/efeitos dos fármacos , Piridinas/farmacologia , Replicação Viral/efeitos dos fármacos , Células HeLa , Humanos , RNA Viral/biossíntese , Proteínas Virais/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...