Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Rhythms ; 35(2): 167-179, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31983261

RESUMO

Aging impairs circadian clock function, leading to disrupted sleep-wake patterns and a reduced capability to adapt to changes in environmental light conditions. This makes shift work or the changing of time zones challenging for the elderly and, importantly, is associated with the development of age-related diseases. However, it is unclear what levels of the clock machinery are affected by aging, which is relevant for the development of targeted interventions. We found that naturally aged mice of >24 months had a reduced rhythm amplitude in behavior compared with young controls (3-6 months). Moreover, the old animals had a strongly reduced ability to adapt to short photoperiods. Recording PER2::LUC protein expression in the suprachiasmatic nucleus revealed no impairment of the rhythms in PER2 protein under the 3 different photoperiods tested (LD: 8:16, 12:12, and 16:8). Thus, we observed a discrepancy between the behavioral phenotype and the molecular clock, and we conclude that the aging-related deficits emerge downstream of the core molecular clock. Since it is known that aging affects several intracellular and membrane components of the central clock cells, it is likely that an impairment of the interaction between the molecular clock and these components is contributing to the deficits in photoperiod adaptation.


Assuntos
Adaptação Fisiológica/efeitos da radiação , Envelhecimento , Relógios Circadianos/genética , Luz , Fotoperíodo , Adaptação Fisiológica/genética , Animais , Relógios Circadianos/fisiologia , Relógios Circadianos/efeitos da radiação , Ritmo Circadiano/genética , Ritmo Circadiano/efeitos da radiação , Masculino , Camundongos , Proteínas Circadianas Period/genética , Fatores de Transcrição
2.
Sci Rep ; 9(1): 10832, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31346204

RESUMO

The concept of "Structural Diversity" of a network refers to the level of dissimilarity between the various agents acting in the system, and it is typically interpreted as the number of connected components in the network. This key property of networks has been studied in multiple settings, including diffusion of ideas in social networks and functional diversity of regions in brain networks. Here, we propose a new measure, "Structural Entropy", as a revised interpretation to "Structural Diversity". The proposed measure relies on the finer-grained network communities (in contrast to the network's connected components), and takes into consideration both the number of communities and their sizes, generating a single representative value. We then propose an approach for monitoring the structure of correlation-based networks over time, which relies on the newly suggested measure. Finally, we illustrate the usefulness of the new approach, by applying it to the particular case of emergent organization of financial markets. This provides us a way to explore their underlying structural changes, revealing a remarkably high linear correlation between the new measure and the volatility of the assets' prices over time.

3.
PLoS Comput Biol ; 15(5): e1006934, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31042698

RESUMO

Neural systems are organized in a modular way, serving multiple functionalities. This multiplicity requires that both positive (e.g. excitatory, phase-coherent) and negative (e.g. inhibitory, phase-opposing) interactions take place across brain modules. Unfortunately, most methods to detect modules from time series either neglect or convert to positive, any measured negative correlation. This may leave a significant part of the sign-dependent functional structure undetected. Here we present a novel method, based on random matrix theory, for the identification of sign-dependent modules in the brain. Our method filters out both local (unit-specific) noise and global (system-wide) dependencies that typically obfuscate the presence of such structure. The method is guaranteed to identify an optimally contrasted functional 'signature', i.e. a partition into modules that are positively correlated internally and negatively correlated across. The method is purely data-driven, does not use any arbitrary threshold or network projection, and outputs only statistically significant structure. In measurements of neuronal gene expression in the biological clock of mice, the method systematically uncovers two otherwise undetectable, negatively correlated modules whose relative size and mutual interaction strength are found to depend on photoperiod.


Assuntos
Relógios Circadianos/genética , Biologia Computacional/métodos , Algoritmos , Animais , Encéfalo/fisiologia , Expressão Gênica/genética , Técnicas de Introdução de Genes , Redes Reguladoras de Genes/genética , Masculino , Camundongos , Neurônios/fisiologia , Teoria da Probabilidade
4.
Phys Rev E ; 96(3-1): 032315, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29347051

RESUMO

Reconstructing patterns of interconnections from partial information is one of the most important issues in the statistical physics of complex networks. A paramount example is provided by financial networks. In fact, the spreading and amplification of financial distress in capital markets are strongly affected by the interconnections among financial institutions. Yet, while the aggregate balance sheets of institutions are publicly disclosed, information on single positions is mostly confidential and, as such, unavailable. Standard approaches to reconstruct the network of financial interconnection produce unrealistically dense topologies, leading to a biased estimation of systemic risk. Moreover, reconstruction techniques are generally designed for monopartite networks of bilateral exposures between financial institutions, thus failing in reproducing bipartite networks of security holdings (e.g., investment portfolios). Here we propose a reconstruction method based on constrained entropy maximization, tailored for bipartite financial networks. Such a procedure enhances the traditional capital-asset pricing model (CAPM) and allows us to reproduce the correct topology of the network. We test this enhanced CAPM (ECAPM) method on a dataset, collected by the European Central Bank, of detailed security holdings of European institutional sectors over a period of six years (2009-2015). Our approach outperforms the traditional CAPM and the recently proposed maximum-entropy CAPM both in reproducing the network topology and in estimating systemic risk due to fire sales spillovers. In general, ECAPM can be applied to the whole class of weighted bipartite networks described by the fitness model.

5.
PLoS One ; 11(12): e0168954, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28006027

RESUMO

For animals living in temperate latitudes, seasonal changes in day length are an important cue for adaptations of their physiology and behavior to the altered environmental conditions. The suprachiasmatic nucleus (SCN) is known as the central circadian clock in mammals, but may also play an important role in adaptations to different photoperiods. The SCN receives direct light input from the retina and is able to encode day-length by approximating the waveform of the electrical activity rhythm to the duration of daylight. Changing the overall waveform requires a reorganization of the neuronal network within the SCN with a change in the degree of synchrony between the neurons; however, the underlying mechanisms are yet unknown. In the present study we used PER2::LUC bioluminescence imaging in cultured SCN slices to characterize network dynamics on the single-cell level and we aimed to provide evidence for a role of modulations in coupling strength in the photoperiodic-induced phase dispersal. Exposure to long photoperiod (LP) induced a larger distribution of peak times of the single-cell PER2::LUC rhythms in the anterior SCN, compared to short photoperiod. Interestingly, the cycle-to-cycle variability in single-cell period of PER2::LUC rhythms is also higher in the anterior SCN in LP, and is positively correlated with peak time dispersal. Applying a new, impartial community detection method on the time series data of the PER2::LUC rhythm revealed two clusters of cells with a specific spatial distribution, which we define as dorsolateral and ventromedial SCN. Post hoc analysis of rhythm characteristics of these clusters showed larger cycle-to-cycle single-cell period variability in the dorsolateral compared to the ventromedial cluster in the anterior SCN. We conclude that a change in coupling strength within the SCN network is a plausible explanation to the observed changes in single-cell period variability, which can contribute to the photoperiod-induced phase distribution.


Assuntos
Ritmo Circadiano , Fotoperíodo , Núcleo Supraquiasmático/fisiologia , Adaptação Fisiológica , Animais , Medições Luminescentes , Masculino , Camundongos , Rede Nervosa , Núcleo Supraquiasmático/metabolismo
6.
PLoS One ; 10(7): e0133679, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26226226

RESUMO

The mesoscopic organization of complex systems, from financial markets to the brain, is an intermediate between the microscopic dynamics of individual units (stocks or neurons, in the mentioned cases), and the macroscopic dynamics of the system as a whole. The organization is determined by "communities" of units whose dynamics, represented by time series of activity, is more strongly correlated internally than with the rest of the system. Recent studies have shown that the binary projections of various financial and neural time series exhibit nontrivial dynamical features that resemble those of the original data. This implies that a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. Here, we explore whether the binary signatures of multiple time series can replicate the same complex community organization of the financial market, as the original weighted time series. We adopt a method that has been specifically designed to detect communities from cross-correlation matrices of time series data. Our analysis shows that the simpler binary representation leads to a community structure that is almost identical with that obtained using the full weighted representation. These results confirm that binary projections of financial time series contain significant structural information.


Assuntos
Comércio , Administração Financeira , Características de Residência , Modelos Econômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...