Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 12): 2364-71, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627645

RESUMO

Tryptophanase (Trpase) is a pyridoxal 5'-phosphate (PLP)-dependent homotetrameric enzyme which catalyzes the degradation of L-tryptophan. Trpase is also known for its cold lability, which is a reversible loss of activity at low temperature (2°C) that is associated with the dissociation of the tetramer. Escherichia coli Trpase dissociates into dimers, while Proteus vulgaris Trpase dissociates into monomers. As such, this enzyme is an appropriate model to study the protein-protein interactions and quaternary structure of proteins. The aim of the present study was to understand the differences in the mode of dissociation between the E. coli and P. vulgaris Trpases. In particular, the effect of mutations along the molecular axes of homotetrameric Trpase on its dissociation was studied. To answer this question, two groups of mutants of the E. coli enzyme were created to resemble the amino-acid sequence of P. vulgaris Trpase. In one group, residues 15 and 59 that are located along the molecular axis R (also termed the noncatalytic axis) were mutated. The second group included a mutation at position 298, located along the molecular axis Q (also termed the catalytic axis). Replacing amino-acid residues along the R axis resulted in dissociation of the tetramers into monomers, similar to the P. vulgaris Trpase, while replacing amino-acid residues along the Q axis resulted in dissociation into dimers only. The crystal structure of the V59M mutant of E. coli Trpase was also determined in its apo form and was found to be similar to that of the wild type. This study suggests that in E. coli Trpase hydrophobic interactions along the R axis hold the two monomers together more strongly, preventing the dissociation of the dimers into monomers. Mutation of position 298 along the Q axis to a charged residue resulted in tetramers that are less susceptible to dissociation. Thus, the results indicate that dissociation of E. coli Trpase into dimers occurs along the molecular Q axis.


Assuntos
Proteínas de Bactérias/química , Escherichia coli/química , Subunidades Proteicas/química , Proteus vulgaris/química , Triptofano/química , Triptofanase/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biocatálise , Cristalografia por Raios X , Escherichia coli/enzimologia , Escherichia coli/genética , Expressão Gênica , Cinética , Modelos Moleculares , Mutação , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteus vulgaris/enzimologia , Proteus vulgaris/genética , Fosfato de Piridoxal/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Homologia Estrutural de Proteína , Triptofano/metabolismo , Triptofanase/genética , Triptofanase/metabolismo
2.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 3): 286-90, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25760702

RESUMO

Two crystal forms of Escherichia coli tryptophanase (tryptophan indole-lyase, Trpase) were obtained under the same crystallization conditions. Both forms belonged to the same space group P43212 but had slightly different unit-cell parameters. The holo crystal form, with pyridoxal phosphate (PLP) bound to Lys270 of both polypeptide chains in the asymmetric unit, diffracted to 2.9 Šresolution. The second crystal form diffracted to 3.2 Šresolution. Of the two subunits in the asymmetric unit, one was found in the holo form, while the other appeared to be in the apo form in a wide-open conformation with two sulfate ions bound in the vicinity of the active site. The conformation of all holo subunits is the same in both crystal forms. The structures suggest that Trpase is flexible in the apo form. Its conformation partially closes upon binding of PLP. The closed conformation might correspond to the enzyme in its active state with both cofactor and substrate bound in a similar way as in tyrosine phenol-lyase.


Assuntos
Apoenzimas/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Triptofanase/química , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Fosfato de Piridoxal/química
3.
J Med Chem ; 58(4): 2042-4, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25665147

RESUMO

Lithium salts (Li) are used to treat bipolar disorder patients. Li inhibits inositol-monophosphatase (IMPase)-1. Calbindin D28k (calbindin) and S100B enhance IMPase-1 activity. We compared our in silico model of the IMPase-1/calbindin complex with the crystal structure of S100B. Although calbindin and S100B have a low sequence homology, they seem to activate IMPase-1 in a similar mode. It is reasonable that molecules interfering with the interaction of IMPase-1 with either of its activators will have Li-like effects.


Assuntos
Calbindina 1/metabolismo , Lítio/farmacologia , Terapia de Alvo Molecular , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Monoéster Fosfórico Hidrolases/química , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Sítios de Ligação/efeitos dos fármacos , Calbindina 1/química , Humanos , Lítio/química , Modelos Moleculares , Monoéster Fosfórico Hidrolases/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/química , Relação Estrutura-Atividade
4.
Eur Neuropsychopharmacol ; 23(12): 1806-15, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23619164

RESUMO

Bipolar-disorder (manic-depressive illness) is a severe chronic illness affecting ∼1% of the adult population. It is treated with mood-stabilizers, the prototypic one being lithium-salts (lithium), but it has life threatening side-effects and a significant number of patients fail to respond. The lithium-inhibitable enzyme inositol-monophosphatase (IMPase) is one of the viable targets for lithium's mechanism of action. Calbindin-D28k (calbindin) up-regulates IMPase activity. The IMPase-calbindincomplex was modeled using the program MolFit. The in-silico model indicated that the 55-66 amino-acid segment of IMPase anchors calbindin via Lys59 and Lys61 with a glutamate in between (Lys-Glu-Lys motif) and that the motif interacts with residues Asp24 and Asp26 of calbindin. We found that differently from wildtype calbindin, IMPase was not activated by mutated calbindin in which Asp24 and Asp26 were replaced by alanine. Calbindin's effect was significantly reduced by a linear peptide with the sequence of amino acids 58-63 of IMPase (peptide 1) and by six amino-acid linear peptides including at least part of the Lys-Glu-Lys motif. The three amino-acid peptide Lys-Glu-Lys or five amino-acid linear peptides containing this motif were ineffective. Mice administered peptide 1 intracerebroventricularly exhibited a significant anti-depressant-like reduced immobility in the forced-swim test. Based on the sequence of peptide 1, and to potentially increase the peptide's stability, cyclic and linear pre-cyclic analog peptides were synthesized. One cyclic peptide and one linear pre-cyclic analog peptide inhibited calbindin-activated brain IMPase activity in-vitro. Our findings may lead to the development of molecules capable of inhibiting IMPase activity at an alternative site than that of lithium.


Assuntos
Encéfalo/metabolismo , Calbindina 1/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Análise de Variância , Animais , Sítios de Ligação/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Comportamento Exploratório/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Peptídeos Cíclicos/metabolismo , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Natação/psicologia , Caminhada/fisiologia
5.
J Med Chem ; 55(3): 1013-20, 2012 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-22216760

RESUMO

ACTIBIND and its human homologue RNASET2 are T2 ribonucleases (RNases). RNases are ubiquitous and efficient enzymes that hydrolyze RNA to 3' mononucleotides and also possess antitumorigenic and antiangiogenic activities. Previously, we have shown that ACTIBIND and RNASET2 bind actin and interfere with the cytoskeletal network structure, thereby inhibiting cell motility and invasiveness in cancer and in endothelial cells. We also showed that ACTIBIND binds actin in a molar ratio of 1:2. Here, we further characterize ACTIBIND and determine its crystal structure at 1.8 Å resolution, which enables us to propose two structural elements that create binding sites to actin. We suggest that each of these binding sites is composed of one cysteine residue and one conserved amino acid region. These binding sites possibly interfere with the cytoskeleton network structure and as such may be responsible for the antitumorigenic and antiangiogenic activities of ACTIBIND and its human analogue RNASET2.


Assuntos
Inibidores da Angiogênese/química , Aspergillus niger/química , Proteínas de Bactérias/química , Glicoproteínas/química , Modelos Moleculares , Ribonucleases/química , Actinas/química , Sequência de Aminoácidos , Inibidores da Angiogênese/isolamento & purificação , Inibidores da Angiogênese/farmacologia , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Glicoproteínas/isolamento & purificação , Glicoproteínas/farmacologia , Glicosilação , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Dados de Sequência Molecular , Conformação Proteica , Ribonucleases/isolamento & purificação , Ribonucleases/farmacologia , Alinhamento de Sequência , Proteínas Supressoras de Tumor/química
6.
J Biol Chem ; 286(35): 30433-30443, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21724851

RESUMO

Protein S-nitrosylation is a reversible protein modification implicated in both physiological and pathophysiological regulation of protein function. In obesity, skeletal muscle insulin resistance is associated with increased S-nitrosylation of insulin-signaling proteins. However, whether adipose tissue is similarly affected in obesity and, if so, what are the causes and functional consequences of increased S-nitrosylation in this tissue are unknown. Total protein S-nitrosylation was increased in intra-abdominal adipose tissue of obese humans and in high fat-fed or leptin-deficient ob/ob mice. Both the insulin receptor ß-subunit and Akt were S-nitrosylated, correlating with body weight. Elevated protein and mRNA expression of inducible NO synthase and decreased protein levels of thioredoxin reductase were associated with increased adipose tissue S-nitrosylation. Cultured differentiated pre-adipocyte cell lines exposed to the NO donors S-nitrosoglutathione (GSNO) or S-nitroso-N-acetylpenicillamine exhibited diminished insulin-stimulated phosphorylation of Akt but not of GSK3 nor of insulin-stimulated glucose uptake. Yet the anti-lipolytic action of insulin was markedly impaired in both cultured adipocytes and in mice injected with GSNO prior to administration of insulin. In cells, impaired ability of insulin to diminish phosphorylated PKA substrates in response to isoproterenol suggested impaired insulin-induced activation of PDE3B. Consistently, increased S-nitrosylation of PDE3B was detected in adipose tissue of high fat-fed obese mice. Site-directed mutagenesis revealed that Cys-768 and Cys-1040, two putative sites for S-nitrosylation adjacent to the substrate-binding site of PDE3B, accounted for ∼50% of its GSNO-induced S-nitrosylation. Collectively, PDE3B and the anti-lipolytic action of insulin may constitute novel targets for increased S-nitrosylation of adipose tissue in obesity.


Assuntos
Adipócitos/citologia , Tecido Adiposo/metabolismo , Insulina/metabolismo , Nitrogênio/química , Obesidade/metabolismo , Animais , Cisteína/química , Feminino , Humanos , Resistência à Insulina/fisiologia , Lipólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Estresse Oxidativo , Fosforilação
7.
Bipolar Disord ; 11(8): 885-96, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19922557

RESUMO

OBJECTIVES: Lithium, valproate, and carbamazepine decrease stimulated brain cyclic-AMP (cAMP) levels. Adenylyl cyclase (AC), of which there are nine membrane-bound isoforms (AC1-AC9), catalyzes the formation of cAMP. We have recently demonstrated preferential inhibition of AC5 by lithium. We now sought to determine whether carbamazepine and valproate also preferentially inhibit specific AC isoforms or decrease cAMP levels via different mechanisms. METHODS: COS7 cells were transfected with one of AC1-AC9, with or without D1-dopamine receptors. Carbamazepine's and valproate's effect on forskolin- or D1 agonist-stimulated ACs was studied. The effect of Mg(2+) on lithium's inhibition was studied in membrane-enriched fraction from COS7 cells co-expressing AC5 and D1 receptors. AC5 knockout mice were tested for a behavioral phenotype similar to that of lithium treatment. RESULTS: Carbamazepine preferentially inhibited forskolin-stimulated AC5 and AC1 and all D1 agonist-stimulated ACs, with AC5 and AC7 being the most sensitive. When compared to 1 or 3 mM Mg(2+), 10 mM Mg(2+) reduced lithium-induced AC5 inhibition by 70%. In silico modeling suggests that among AC isoforms carbamazepine preferentially affects AC1 and AC5 by interacting with the catechol-estrogen site. Valproate did not affect any forskolin- or D1 receptor-stimulated AC. AC5 knockout mice responded similarly to antidepressant- or lithium-treated wild-types in the forced-swim test but not in the amphetamine-induced hyperactivity mania model. CONCLUSIONS: Lithium and carbamazepine preferentially inhibit AC5, albeit via different mechanisms. Lithium competes with Mg(2+), which is essential for AC activity; carbamazepine competes for AC's catechol-estrogen site. Antidepressant-like behavior of AC5 knockout mice in the forced-swim test supports the notion that AC5 inhibition is involved in the antidepressant effect of lithium and carbamazepine. The effect of lithium and carbamazepine to lower cAMP formation in AC5-rich dopaminergic brain regions suggests that D1-dopamine receptors in these regions are involved in the antidepressant effect of mood stabilizers.


Assuntos
Adenilil Ciclases/classificação , Adenilil Ciclases/metabolismo , Antimaníacos/farmacologia , Carbamazepina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Adenilil Ciclases/deficiência , Adenilil Ciclases/genética , Anfetamina/farmacologia , Análise de Variância , Animais , Benzazepinas/farmacologia , Células COS , Chlorocebus aethiops , Colforsina/farmacologia , AMP Cíclico/metabolismo , Agonistas de Dopamina/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Isoenzimas/deficiência , Lítio/farmacologia , Camundongos , Camundongos Knockout , Modelos Moleculares , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Teste de Desempenho do Rota-Rod/métodos , Natação/psicologia , Transfecção , Ácido Valproico/farmacologia
8.
BMC Struct Biol ; 9: 65, 2009 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-19814824

RESUMO

BACKGROUND: Oligomeric enzymes can undergo a reversible loss of activity at low temperatures. One such enzyme is tryptophanase (Trpase) from Escherichia coli. Trpase is a pyridoxal phosphate (PLP)-dependent tetrameric enzyme with a Mw of 210 kD. PLP is covalently bound through an enamine bond to Lys270 at the active site. The incubation of holo E. coli Trpases at 2 degrees C for 20 h results in breaking this enamine bond and PLP release, as well as a reversible loss of activity and dissociation into dimers. This sequence of events is termed cold lability and its understanding bears relevance to protein stability and shelf life. RESULTS: We studied the reversible cold lability of E. coli Trpase and its Y74F, C298S and W330F mutants. In contrast to the holo E. coli Trpase all apo forms of Trpase dissociated into dimers already at 25 degrees C and even further upon cooling to 2 degrees C. The crystal structures of the two mutants, Y74F and C298S in their apo form were determined at 1.9A resolution. These apo mutants were found in an open conformation compared to the closed conformation found for P. vulgaris in its holo form. This conformational change is further supported by a high pressure study. CONCLUSION: We suggest that cold lability of E. coli Trpases is primarily affected by PLP release. The enhanced loss of activity of the three mutants is presumably due to the reduced size of the side chain of the amino acids. This prevents the tight assembly of the active tetramer, making it more susceptible to the cold driven changes in hydrophobic interactions which facilitate PLP release. The hydrophobic interactions along the non catalytic interface overshadow the effect of point mutations and may account for the differences in the dissociation of E. coli Trpase to dimers and P. vulgaris Trpase to monomers.


Assuntos
Escherichia coli/enzimologia , Triptofanase/química , Cristalografia por Raios X , Mutagênese Sítio-Dirigida , Pressão , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Temperatura , Fatores de Tempo , Triptofanase/genética
9.
Proteins ; 74(2): 489-96, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18655058

RESUMO

We determine and compare the crystal structure of two proteases belonging to the subtilisin superfamily: S41, a cold-adapted serine protease produced by Antarctic bacilli, at 1.4 A resolution and Sph, a mesophilic serine protease produced by Bacillus sphaericus, at 0.8 A resolution. The purpose of this comparison was to find out whether multiple calcium ion binding is a molecular factor responsible for the adaptation of S41 to extreme low temperatures. We find that these two subtilisins have the same subtilisin fold with a root mean square between the two structures of 0.54 A. The final models for S41 and Sph include a calcium-loaded state of five ions bound to each of these two subtilisin molecules. None of these calcium-binding sites correlate with the high affinity known binding site (site A) found for other subtilisins. Structural analysis of the five calcium-binding sites found in these two crystal structures indicate that three of the binding sites have two side chains of an acidic residue coordinating the calcium ion, whereas the other two binding sites have either a main-chain carbonyl, or only one acidic residue side chain coordinating the calcium ion. Thus, we conclude that three of the sites are of high affinity toward calcium ions, whereas the other two are of low affinity. Because Sph is a mesophilic subtilisin and S41 is a psychrophilic subtilisin, but both crystal structures were found to bind five calcium ions, we suggest that multiple calcium ion binding is not responsible for the adaptation of S41 to low temperatures.


Assuntos
Bacillus/enzimologia , Subtilisinas/química , Animais , Cálcio/metabolismo , Domínio Catalítico , Temperatura Baixa , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Subtilisinas/metabolismo
10.
Nano Lett ; 8(2): 473-7, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18193911

RESUMO

Controlled formation of complex nanostructures is one of the main goals of nanoscience and nanotechnology. Stable Protein 1 (SP1) is a boiling-stable ring protein complex, 11 nm in diameter, which self-assembles from 12 identical monomers. SP1 can be utilized to form large ordered arrays; it can be easily modified by genetic engineering to produce various mutants; it is also capable of binding gold nanoparticles (GNPs) and thus forming protein-GNP chains made of alternating SP1s and GNPs. We report the formation and the protocols leading to the formation of those nanostructures and their characterization by transmission electron microscopy, atomic force microscopy, and electrostatic force microscopy. Further control over the GNP interdistances within the protein-GNP chains may lead to the formation of nanowires and structures that may be useful for nanoelectronics.


Assuntos
Cristalização/métodos , Imunoglobulinas/química , Imunoglobulinas/ultraestrutura , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Análise Serial de Proteínas/métodos , Adsorção , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Ligação Proteica , Propriedades de Superfície
11.
Biopolymers ; 89(5): 354-9, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-17937401

RESUMO

A wide variety of enzymes can undergo a reversible loss of activity at low temperature, a process that is termed cold inactivation. This phenomenon is found in oligomeric enzymes such as tryptophanase (Trpase) and other pyridoxal phosphate dependent enzymes. On the other hand, cold-adapted, or psychrophilic enzymes, isolated from organisms able to thrive in permanently cold environments, have optimal activity at low temperature, which is associated with low thermal stability. Since cold inactivation may be considered "contradictory" to cold adaptation, we have looked into the amino acid sequences and the crystal structures of two families of enzymes, subtilisin and tryptophanase. Two cold adapted subtilisins, S41 and subtilisin-like protease from Vibrio, were compared to a mesophilic and a thermophilic subtilisins, as well as to four PLP-dependent enzymes in order to understand the specific surface residues, specific interactions, or any other molecular features that may be responsible for the differences in their tolerance to cold temperatures. The comparison between the psychrophilic and the mesophilic subtilisins revealed that the cold adapted subtilisins have a high content of acidic residues mainly found on their surface, making it charged. The analysis of the Trpases showed that they have a high content of hydrophobic residues on their surface. Thus, we suggest that the negatively charged residues on the surface of the subtilisins may be responsible for their cold adaptation, whereas the hydrophobic residues on the surface of monomeric Trpase molecules are responsible for the tetrameric assembly, and may account for their cold inactivation and dissociation.


Assuntos
Adaptação Fisiológica , Temperatura Baixa , Subtilisina/fisiologia , Triptofanase/fisiologia , Ativação Enzimática/fisiologia , Estabilidade Enzimática/fisiologia , Modelos Moleculares , Conformação Proteica , Temperatura
12.
Acta Crystallogr D Biol Crystallogr ; 63(Pt 9): 969-74, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17704565

RESUMO

The crystal structure of apo tryptophanase from Escherichia coli (space group F222, unit-cell parameters a = 118.4, b = 120.1, c = 171.2 A) was determined at 1.9 A resolution using the molecular-replacement method and refined to an R factor of 20.3% (R(free) = 23.2%). The structure revealed a significant shift in the relative orientation of the domains compared with both the holo form of Proteus vulgaris tryptophanase and with another crystal structure of apo E. coli tryptophanase, reflecting the internal flexibility of the molecule. Domain shifts were previously observed in tryptophanase and in the closely related enzyme tyrosine phenol-lyase, with the holo form found in an open conformation and the apo form in either an open or a closed conformation. Here, a wide-open conformation of the apo form of tryptophanase is reported. A conformational change is also observed in loop 297-303. The structure contains a hydrated Mg(2+) at the cation-binding site and a Cl(-) ion at the subunit interface. The enzyme activity depends on the nature of the bound cation, with smaller ions serving as inhibitors. It is hypothesized that this effect arises from variations of the coordination geometry of the bound cation.


Assuntos
Cristalografia por Raios X/métodos , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Triptofanase/química , Sítios de Ligação , Catálise , Cristalização , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteus vulgaris/enzimologia , Especificidade por Substrato , Triptofanase/genética , Triptofanase/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-17671376

RESUMO

ACTIBIND is a T2 RNase extracellular glycoprotein produced by the mould Aspergillus niger B1 (CMI CC 324626) that possesses anticarcinogenic and antiangiogenic activities. ACTIBIND was found to be an actin-binding protein that interacts with rabbit muscle actin in a 1:2 molar ratio (ACTIBIND:actin) with a binding constant of 16.17 x 10(4) M(-1). Autoclave-treated ACTIBIND (EI-ACTIBIND) lost its RNase activity, but its actin-binding ability was conserved. ACTIBIND crystals were grown using 20% PEG 3350, 0.2 M ammonium dihydrogen phosphate solution at room temperature (293 K). One to four single crystals appeared in each droplet within a few days and grew to approximate dimensions of 0.5 x 0.5 x 0.5 mm after about two weeks. Diffraction studies of these crystals at low temperature (100 K) indicated that they belong to the P3(1)21 space group, with unit-cell parameters a = 78, b = 78, c = 104 A.


Assuntos
Inibidores da Angiogênese/química , Inibidores da Angiogênese/metabolismo , Anticarcinógenos/química , Anticarcinógenos/metabolismo , Endorribonucleases/química , Endorribonucleases/metabolismo , Cristalografia por Raios X , Ligação Proteica/fisiologia
14.
Biochim Biophys Acta ; 1773(10): 1526-33, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17561283

RESUMO

During oogenesis in Drosophila, mRNAs encoding determinants required for the polarization of egg and embryo become localized in the oocyte in a spatially restricted manner. The TGF-alpha like signaling molecule Gurken has a central role in the polarization of both body axes and the corresponding mRNA displays a unique localization pattern, accumulating initially at the posterior and later at the anterior-dorsal of the oocyte. Correct localization of gurken RNA requires a number of cis-acting sequence elements, a complex of trans-acting proteins, of which only several have been identified, and the motor proteins Dynein and Kinesin, traveling along polarized microtubules. Here we report that the cytoplasmic Dynein-light-chain (DDLC1) which is the cargo-binding subunit of the Dynein motor protein, directly bound with high specificity and affinity to a 230-nucleotide region within the 3'UTR of gurken, making it the first Drosophila mRNA-cargo to directly bind to the DLC. Although DDLC1 lacks known RNA-binding motifs, comparison to double-stranded RNA-binding proteins suggested structural resemblance. Phenotypic analysis of ddlc1 mutants supports a role for DDLC1 in gurken RNA localization and anchoring as well as in correct positioning of the oocyte nucleus.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , RNA Mensageiro/metabolismo , Fator de Crescimento Transformador alfa/metabolismo , Regiões 3' não Traduzidas , Animais , Proteínas de Transporte/genética , Núcleo Celular/metabolismo , Proteínas de Drosophila/genética , Dineínas , Feminino , Glutationa Transferase/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Oócitos/metabolismo , Ligação Proteica , RNA de Cadeia Dupla/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
15.
J Biol Chem ; 279(49): 51516-23, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15371455

RESUMO

We previously reported on a new boiling stable protein isolated from aspen plants (Populus tremula), which we named SP1. SP1 is a stress-related protein with no significant sequence homology to other stress-related proteins. It is a 108-amino-acid hydrophilic polypeptide with a molecular mass of 12.4 kDa (Wang, W. X., Pelah, D., Alergand, T., Shoseyov, O., and Altman, A. (2002) Plant Physiol. 130, 865-875) and is found in an oligomeric form. Preliminary electron microscopy studies and matrix-assisted laser desorption ionization time-of-flight mass spectrometry experiments showed that SP1 is a dodecamer composed of two stacking hexamers. We performed a SDS-PAGE analysis, a differential scanning calorimetric study, and crystal structure determination to further characterize SP1. SDS-PAGE indicated a spontaneous assembly of SP1 to one stable oligomeric form, a dodecamer. Differential scanning calorimetric showed that SP1 has high thermostability i.e. Tm of 107 degrees C (at pH 7.8). The crystal structure of SP1 was initially determined to 2.4 A resolution by multi-wavelength anomalous dispersion method from a crystal belonging to the space group I422. The phases were extended to 1.8 A resolution using data from a different crystal form (P21). The final refined molecule includes 106 of the 108 residues and 132 water molecules (on average for each chain). The R-free is 20.1%. The crystal structure indicated that the SP1 molecule has a ferredoxin-like fold. Strong interactions between each two molecules create a stable dimer. Six dimers associate to form a ring-like-shaped dodecamer strongly resembling the particle visualized in the electron microscopy studies. No structural similarity was found between the crystal structure of SP1 and the crystal structure of other stress-related proteins such as small heat shock proteins, whose structure has been already determined. This structural study further supports our previous report that SP1 may represent a new family of stress-related proteins with high thermostability and oligomerization.


Assuntos
Proteínas de Choque Térmico/química , Proteínas de Plantas/química , Populus/metabolismo , Sequência de Aminoácidos , Varredura Diferencial de Calorimetria , Cristalografia por Raios X , Dimerização , Eletroforese em Gel de Poliacrilamida , Ácido Glutâmico/química , Microscopia Eletrônica , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Conformação Proteica , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Temperatura
16.
J Mol Biol ; 332(5): 1071-82, 2003 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-14499610

RESUMO

We have previously isolated sphericase (Sph), an extracellular mesophilic serine protease produced by Bacillus sphaericus. The Sph amino acid sequence is highly homologous to two cold-adapted subtilisins from Antarctic bacilli S39 and S41 (76% and 74% identity, respectively). Sph is calcium-dependent, 310 amino acid residues long and has optimal activity at pH 10.0. S41 and S39 have not as yet been structurally analysed. In the present work, we determined the crystal structure of Sph by the Eu/multiwavelength anomalous diffraction method. The structure was extended to 0.93A resolution and refined to a crystallographic R-factor of 9.7%. The final model included all 310 amino acid residues, one disulfide bond, 679 water molecules and five calcium ions. Although Sph is a mesophilic subtilisin, its amino acid sequence is similar to that of the psychrophilic subtilisins, which suggests that the crystal structure of these subtilisins is very similar. The presence of five calcium ions bound to a subtilisin molecule, as found here for Sph, has not been reported for the subtilisin superfamily. None of these calcium-binding sites correlates with the well-known high-affinity calcium-binding site (site I or site A), and only one site has been described previously. This calcium-binding pattern suggests that a reduction in the flexibility of the surface loops of Sph by calcium binding may be responsible for its adaptation to mesophilic organisms.


Assuntos
Bacillus/enzimologia , Serina Endopeptidases/fisiologia , Sequência de Aminoácidos , Sítios de Ligação , Cálcio/química , Cálcio/metabolismo , Temperatura Baixa , Cristalografia por Raios X , Bases de Dados como Assunto , Concentração de Íons de Hidrogênio , Íons , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , Serina Endopeptidases/química , Subtilisina/química
17.
Acta Crystallogr D Biol Crystallogr ; 59(Pt 3): 512-4, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12595711

RESUMO

SP1 (108 amino acids) is a boiling-stable stress-responsive protein. It has no significant sequence homology to other stress-related proteins or to small heat-shock proteins (sHsps). SP1 activity is ATP-independent, similar to other small heat-shock proteins. Based on these features, it is expected that the structure-function relationship of SP1 will be unique. In this work, the crystallization and preliminary crystallographic data of native SP1 and its selenomethionine derivative are described. Recombinant SP1 and its selenomethionine derivative were expressed in Escherichia coli and used for crystallization experiments. SP1 crystals were grown from 0.1 M HEPES pH 7.5, 20% PEG 3K, 0.2 M NaCl. One to four single crystals appeared in each droplet within a few Days and grew to dimensions of about 0.5 x 0.5 x 0.8 mm after about two weeks. Diffraction studies of these crystals at low temperature indicated that they belong to space group I422, with unit-cell parameters a = 89, b = 89, c = 187 A. Efforts to crystallize the selenomethionine derivative of SP1 are in progress.


Assuntos
Proteínas de Choque Térmico/química , Chaperonas Moleculares/análise , Cristalização , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Endopeptidase K/química , Escherichia coli/metabolismo , Hidrólise , Modelos Moleculares , Selenometionina/química
18.
J Biol Chem ; 277(30): 27553-8, 2002 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-12011071

RESUMO

The crystal structures of two thermally stabilized subtilisin BPN' variants, S63 and S88, are reported here at 1.8 and 1.9 A resolution, respectively. The micromolar affinity calcium binding site (site A) has been deleted (Delta75-83) in these variants, enabling the activity and thermostability measurements in chelating conditions. Each of the variants includes mutations known previously to increase the thermostability of calcium-independent subtilisin in addition to new stabilizing mutations. S63 has eight amino acid replacements: D41A, M50F, A73L, Q206W, Y217K, N218S, S221C, and Q271E. S63 has 75-fold greater stability than wild type subtilisin in chelating conditions (10 mm EDTA). The other variant, S88, has ten site-specific changes: Q2K, S3C, P5S, K43N, M50F, A73L, Q206C, Y217K, N218S, and Q271E. The two new cysteines form a disulfide bond, and S88 has 1000 times greater stability than wild type subtilisin in chelating conditions. Comparisons of the two new crystal structures (S63 in space group P2(1) with A cell constants 41.2, 78.1, 36.7, and beta = 114.6 degrees and S88 in space group P2(1)2(1)2(1) with cell constants 54.2, 60.4, and 82.7) with previous structures of subtilisin BPN' reveal that the principal changes are in the N-terminal region. The structural bases of the stabilization effects of the new mutations Q2K, S3C, P5S, D41A, Q206C, and Q206W are generally apparent. The effects are attributed to the new disulfide cross-link and to improved hydrophobic packing, new hydrogen bonds, and other rearrangements in the N-terminal region.


Assuntos
Mutação , Subtilisinas/química , Subtilisinas/genética , Bacillus/enzimologia , Dicroísmo Circular , Clonagem Molecular , Cristalografia por Raios X , Dissulfetos , Ligação de Hidrogênio , Modelos Moleculares , Mutagênese Sítio-Dirigida , Temperatura , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...