Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(10): e31448, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813141

RESUMO

APAP (Acetaminophen)-induced hepatic injury is a major public health threat that requires continuous searching for new effective therapeutics. KSG (Kaempferol-3-sophoroside-7-glucoside) is a kaempferol derivative that was separated from plant species belonging to different genera. This study explored the protective effects of KSG on ALI (acute liver injury) caused by APAP overdose in mice and elucidated its possible mechanisms. The results showed that KSG pretreatment alleviated APAP-induced hepatic damage as it reduced hepatic pathological lesions as well as the serum parameters of liver injury. Moreover, KSG opposed APAP-associated oxidative stress and augmented hepatic antioxidants. KSG suppressed the inflammatory response as it decreased the genetic and protein expression as well as the levels of inflammatory cytokines. Meanwhile, KSG enhanced the mRNA expression and level of anti-inflammatory cytokine, IL-10 (interleukin-10). KSG repressed the activation of NF-κB (nuclear-factor kappa-B), besides it promoted the activation of Nrf2 signaling. Additionally, KSG markedly hindered the elevation of ASK-1 (apoptosis-signal regulating-kinase-1) and JNK (c-Jun-N-terminal kinase). Furthermore, KSG suppressed APAP-induced apoptosis as it decreased the level and expression of Bax (BCL2-associated X-protein), and caspase-3 concurrent with an enhancement of anti-apoptotic protein, Bcl2 in the liver. More thoroughly, Computational studies reveal indispensable binding affinities between KSG and Keap1 (Kelch-like ECH-associated protein-1), ASK1 (apoptosis signal-regulating kinase-1), and JNK1 (c-Jun N-terminal protein kinase-1) with distinctive tendencies for selective inhibition. Taken together, our data showed the hepatoprotective capacity of KSG against APAP-produced ALI via modulation of Nrf2/NF-κB and JNK/ASK-1/caspase-3 signaling. Henceforth, KSG could be a promising hepatoprotective candidate for ALI.

2.
Metabolites ; 13(10)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37887415

RESUMO

Cyclin-dependent kinase 5 (CDK5) plays a crucial role in various biological processes, including immune response, insulin secretion regulation, apoptosis, DNA (deoxyribonucleic acid) damage response, epithelial-mesenchymal transition (EMT), cell migration and invasion, angiogenesis, and myogenesis. Overactivation of CDK5 is associated with the initiation and progression of cancer. Inhibiting CDK5 has shown potential in suppressing cancer development. Despite advancements in CDK5-targeted inhibitor research, the range of compounds available for clinical and preclinical trials remains limited. The marine environment has emerged as a prolific source of diverse natural products with noteworthy biological activities, including anti-cancer properties. In this study, we screened a library of 47,450 marine natural compounds from the comprehensive marine natural product database (CMNPD) to assess their binding affinity with CDK5. Marine compounds demonstrating superior binding affinity compared to a reference compound were identified through high-throughput virtual screening, standard precision and extra-precision Glide docking modes. Refinement of the selected molecules involved evaluating molecular mechanics-generalized born surface area (MM/GBSA) free binding energy. The three most promising compounds, (excoecariphenol B, excoecariphenol A, and zyzzyanone B), along with the reference, exhibiting favorable binding characteristics were chosen for molecular dynamics (MD) simulations for 200 nanoseconds. These compounds demonstrated interaction stability with the target during MD simulations. The marine compounds identified in this study hold potential as effective CDK5 inhibitors and warrant subsequent experimental validation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...