Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Res ; 118(12): 2718-2731, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34478521

RESUMO

AIMS: Graft vascular disease (GVD), a clinically important and highly complex vascular occlusive disease, arises from the interplay of multiple cellular and molecular pathways. While occlusive intimal lesions are composed predominantly of smooth-muscle-like cells (SMLCs), the origin of these cells and the stimuli leading to their accumulation in GVD are uncertain. Macrophages have recently been identified as both potential drivers of intimal hyperplasia and precursors that undergo transdifferentiation to become SMLCs in non-transplant settings. Colony-stimulating factor-1 (CSF1) is a well-known regulator of macrophage development and differentiation, and prior preclinical studies have shown that lack of CSF1 limits GVD. We sought to identify the origins of SMLCs and of cells expressing the CSF1 receptor (CSF1R) in GVD, and to test the hypothesis that pharmacologic inhibition of CSF1 signalling would curtail both macrophage and SMLC activities and decrease vascular occlusion. METHODS AND RESULTS: We used genetically modified mice and a vascular transplant model with minor antigen mismatch to assess cell origins. We found that neointimal SMLCs derive from both donor and recipient, and that transdifferentiation of macrophages to SMLC phenotype is minimal in this model. Cells expressing CSF1R in grafts were identified as recipient-derived myeloid cells of Cx3cr1 lineage, and these cells rarely expressed smooth muscle marker proteins. Blockade of CSF1R activity using the tyrosine kinase inhibitor PLX3397 limited the expression of genes associated with innate immunity and decreased levels of circulating monocytes and intimal macrophages. Importantly, PLX3397 attenuated the development of GVD in arterial allografts. CONCLUSION: These studies provide proof of concept for pharmacologic inhibition of the CSF1/CSF1R signalling pathway as a therapeutic strategy in GVD. Further preclinical testing of this pathway in GVD is warranted.


Assuntos
Fator Estimulador de Colônias de Macrófagos , Remodelação Vascular , Aminopiridinas/farmacologia , Animais , Fator Estimulador de Colônias de Macrófagos/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Pirróis/farmacologia , Receptores Proteína Tirosina Quinases
2.
Circ Res ; 126(5): 619-632, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31914850

RESUMO

RATIONALE: Remodeling of the vessel wall and the formation of vascular networks are dynamic processes that occur during mammalian embryonic development and in adulthood. Plaque development and excessive neointima formation are hallmarks of atherosclerosis and vascular injury. As our understanding of these complex processes evolves, there is a need to develop new imaging techniques to study underlying mechanisms. OBJECTIVE: We used tissue clearing and light-sheet microscopy for 3-dimensional (3D) profiling of the vascular response to carotid artery ligation and induction of atherosclerosis in mouse models. METHODS AND RESULTS: Adipo-Clear and immunolabeling in combination with light-sheet microscopy were applied to image carotid arteries and brachiocephalic arteries, allowing for 3D reconstruction of vessel architecture. Entire 3D neointima formations with different geometries were observed within the carotid artery and scored by volumetric analysis. Additionally, we identified a CD31-positive adventitial plexus after ligation of the carotid artery that evolved and matured over time. We also used this method to characterize plaque extent and composition in the brachiocephalic arteries of ApoE-deficient mice on high-fat diet. The plaques exhibited inter-animal differences in terms of plaque volume, geometry, and ratio of acellular core to plaque volume. A 3D reconstruction of the endothelium overlying the plaque was also generated. CONCLUSIONS: We present a novel approach to characterize vascular remodeling in adult mice using Adipo-Clear in combination with light-sheet microscopy. Our method reconstructs 3D neointima formation after arterial injury and allows for volumetric analysis of remodeling, in addition to revealing angiogenesis and maturation of a plexus surrounding the carotid artery. This method generates complete 3D reconstructions of atherosclerotic plaques and uncovers their volume, geometry, acellular component, surface, and spatial position within the brachiocephalic arteries. Our approach may be used in a number of mouse models of cardiovascular disease to assess vessel geometry and volume. Visual Overview: An online visual overview is available for this article.


Assuntos
Artérias Carótidas/diagnóstico por imagem , Imageamento Tridimensional/métodos , Neovascularização Fisiológica , Imagem Óptica/métodos , Placa Aterosclerótica/diagnóstico por imagem , Animais , Apolipoproteínas E/genética , Variação Biológica da População , Artérias Carótidas/patologia , Artérias Carótidas/fisiologia , Dieta Hiperlipídica/efeitos adversos , Imageamento Tridimensional/normas , Camundongos , Camundongos Endogâmicos C57BL , Neointima/diagnóstico por imagem , Neointima/patologia , Imagem Óptica/normas , Placa Aterosclerótica/etiologia , Remodelação Vascular
3.
Atherosclerosis ; 289: 184-194, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31439353

RESUMO

BACKGROUND AND AIMS: Allograft inflammatory factor-1 (AIF1) has been characterized as a pro-inflammatory molecule expressed primarily in the monocyte/macrophage (MP) lineage and positively associated with various forms of vascular disease, including atherosclerosis. Studies of AIF1 in atherosclerosis have relied on mouse models in which AIF1 was overexpressed in either myeloid or smooth muscle cells, resulting in increased atherosclerotic plaque burden. How physiologic expression of AIF1 contributes to MP biology in atherogenesis is not known. METHODS: Effects of global AIF1 deficiency on atherosclerosis were assessed by crossing Aif1-/- and ApoE-/- mice, and provoking hyperlipidemia with high fat diet feeding. Atherosclerotic plaques were studied en face and in cross section. Bone marrow-derived MPs (BMDMs) were isolated from Aif1-/- mice for study in culture. RESULTS: Atherosclerotic plaques in Aif1-/-;ApoE-/- mice showed larger necrotic cores compared to those in ApoE-/- animals, without change in overall lesion burden. In vitro, lack of AIF1 reduced BMDM survival, phagocytosis, and efferocytosis. Mechanistically, AIF1 supported activation of the NF-κB pathway and expression of related target genes involved in stress response, inflammation, and apoptosis. Consistent with this in vitro BMDM phenotype, AIF1 deficiency reduced NF-κB pathway activity in vivo and increased apoptotic cell number in atherosclerotic lesions from Aif1-/-;ApoE-/- mice. CONCLUSIONS: These findings characterize AIF1 as a positive regulator of the NF-κB pathway that supports MP functions such as survival and efferocytosis. In inflammatory settings such as atherosclerosis, these AIF1-dependent activities serve to clear cellular and other debris and limit necrotic core expansion, and may oppose lesion destabilization.


Assuntos
Aterosclerose/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Macrófagos/citologia , Proteínas dos Microfilamentos/metabolismo , Animais , Apoptose , Aterosclerose/metabolismo , Células da Medula Óssea/citologia , Sobrevivência Celular , Cruzamentos Genéticos , Feminino , Perfilação da Expressão Gênica , Humanos , Inflamação , Lipoproteínas LDL/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , NF-kappa B/metabolismo , Necrose , Fagocitose , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...