Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39012257

RESUMO

The Forkhead box transcription factors Foxc1 and Foxc2 are expressed in condensing mesenchyme cells at the onset of endochondral ossification. We used the Prx1-cre mouse to ablate Foxc1 and Foxc2 in limb skeletal progenitor cells. Prx1-cre;Foxc1Δ/ Δ;Foxc2Δ/Δ limbs were shorter than controls, with worsening phenotypes in distal structures. Cartilage formation and mineralization was severely disrupted in the paws. The radius and tibia were malformed, while the fibula and ulna remained unmineralized. Chondrocyte maturation was delayed with fewer Indian Hedgehog-expressing, prehypertrophic chondrocytes forming and a smaller hypertrophic chondrocyte zone. Later, progression out of chondrocyte hypertrophy was slowed, leading to an accumulation of COLX-expressing hypertrophic chondrocyte zone and formation of a smaller primary ossification center with fewer osteoblast progenitor cells populating this region. Targeting Foxc1 and Foxc2 in hypertrophic chondrocytes with Col10a1-cre also resulted in an expanded hypertrophic chondrocyte zone and smaller primary ossification center. Our findings suggest that Foxc1 and Foxc2 direct chondrocyte maturation towards hypertrophic chondrocyte formation. At later stages, Foxc1 and Foxc2 regulate function in hypertrophic chondrocyte remodelling to allow primary ossification center formation and osteoblast recruitment.

2.
bioRxiv ; 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37162896

RESUMO

The forkhead box transcription factor genes Foxc1 and Foxc2 are expressed in the condensing mesenchyme of the developing skeleton prior to the onset of chondrocyte differentiation. To determine the roles of these transcription factors in limb development we deleted both Foxc1 and Foxc2 in lateral plate mesoderm using the Prx1-cre mouse line. Resulting compound homozygous mice died shortly after birth with exencephaly, and malformations to this sternum and limb skeleton. Notably distal limb structures were preferentially affected, with the autopods displaying reduced or absent mineralization. The radius and tibia bowed and the ulna and fibula were reduced to an unmineralized rudimentary structure. Molecular analysis revealed reduced expression of Ihh leading to reduced proliferation and delayed chondrocyte hypertrophy at E14.5. At later ages, Prx1-cre;Foxc1Δ/ Δ;Foxc2 Δ / Δ embryos exhibited restored Ihh expression and an expanded COLX-positive hypertrophic chondrocyte region, indicating a delayed exit and impaired remodeling of the hypertrophic chondrocytes. Osteoblast differentiation and mineralization were disrupted at the osteochondral junction and in the primary ossification center (POC). Levels of OSTEOPONTIN were elevated in the POC of compound homozygous mutants, while expression of Phex was reduced, indicating that impaired OPN processing by PHEX may underlie the mineralization defect we observe. Together our findings suggest that Foxc1 and Foxc2 act at different stages of endochondral ossification. Initially these genes act during the onset of chondrogenesis leading to the formation of hypertrophic chondrocytes. At later stages Foxc1 and Foxc2 are required for remodeling of HC and for Phex expression required for mineralization of the POC.

3.
Genes (Basel) ; 13(11)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36360262

RESUMO

The introduction of next generation sequencing (NGS) technologies has revolutionized the practice of Medical Genetics, and despite initial reticence in its application to prenatal genetics (PG), it is becoming gradually routine, subject to availability. Guidance for the clinical implementation of NGS in PG, in particular whole exome sequencing (ES), has been provided by several professional societies with multiple clinical studies quoting a wide range of testing yields. ES was introduced in our tertiary care center in 2017; however, its use in relation to prenatally assessed cases has been limited to the postnatal period. In this study, we review our approach to prenatal testing including the use of microarray (CMA), and NGS technology (gene panels, ES) over a period of three years. The overall diagnostic yield was 30.4%, with 43.2% of those diagnoses being obtained through CMA, and the majority by using NGS technology (42% through gene panels and 16.6% by ES testing, respectively). Of these, 43.4% of the diagnoses were obtained during ongoing pregnancies. Seventy percent of the abnormal pregnancies tested went undiagnosed. We are providing a contemporary, one tertiary care center retrospective view of a real-life PG practice in the context of an evolving use of NGS within a Canadian public health care system that may apply to many similar jurisdictions around the world.


Assuntos
Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Feminino , Humanos , Gravidez , Canadá , Estudos Retrospectivos , Sequenciamento do Exoma
4.
Methods Mol Biol ; 2579: 227-233, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36045210

RESUMO

Cell proliferation is one of the key events that regulates organism development. In the limb, chondrocytes differentiate into a multi-layered cellular template called the growth plate. Chondrocyte proliferation is essential to provide the necessary cells that allow growth of a bone. Deregulated cell proliferation will lead to truncated bone elements. Immunofluorescence is a biological technique that uses specific antibodies to detect the subcellular localization of a proliferative marker within cellular or tissue context. In this chapter, we illustrate how to perform immunofluorescence to detect the localization of Ki-67 (a marker of actively growing/proliferating chondrocytes) in order to assess the growth fraction of the columnar chondrocytes in the growth plate in paraffin-embedded mouse tissue limb.


Assuntos
Condrócitos , Lâmina de Crescimento , Animais , Diferenciação Celular/fisiologia , Condrócitos/fisiologia , Imunofluorescência , Antígeno Ki-67 , Camundongos , Osteogênese/fisiologia
5.
J Biol Chem ; 297(3): 101020, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34331943

RESUMO

Endochondral ossification initiates the growth of the majority of the mammalian skeleton and is tightly controlled through gene regulatory networks. The forkhead box transcription factors Foxc1 and Foxc2 regulate aspects of osteoblast function in the formation of the skeleton, but their roles in chondrocytes to control endochondral ossification are less clear. Here, we demonstrate that Foxc1 expression is directly regulated by the activity of SRY (sex-determining region Y)-box 9, one of the earliest transcription factors to specify the chondrocyte lineage. Moreover, we demonstrate that elevated expression of Foxc1 promotes chondrocyte differentiation in mouse embryonic stem cells and loss of Foxc1 function inhibits chondrogenesis in vitro. Using chondrocyte-targeted deletion of Foxc1 and Foxc2 in mice, we reveal a role for these factors in chondrocyte differentiation in vivo. Loss of both Foxc1 and Foxc2 caused a general skeletal dysplasia predominantly affecting the vertebral column. The long bones of the limbs were smaller, mineralization was reduced, and organization of the growth plate was disrupted; in particular, the stacked columnar organization of the proliferative chondrocyte layer was reduced in size and cell proliferation was decreased. Differential gene expression analysis indicated disrupted expression patterns of chondrogenesis and ossification genes throughout the entire process of endochondral ossification in chondrocyte-specific Foxc1/Foxc2 KO embryos. Our results suggest that Foxc1 and Foxc2 are required for normal chondrocyte differentiation and function, as loss of both genes results in disorganization of the growth plate, reduced chondrocyte proliferation, and delays in chondrocyte hypertrophy that prevents ossification of the skeleton.


Assuntos
Condrócitos/metabolismo , Condrogênese/genética , Fatores de Transcrição Forkhead/metabolismo , Osteogênese/genética , Células-Tronco/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Condrócitos/citologia , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica/fisiologia , Lâmina de Crescimento/citologia , Lâmina de Crescimento/metabolismo , Camundongos , Fatores de Transcrição SOX9/fisiologia , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...