Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Intell Neurosci ; 2022: 2073482, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571702

RESUMO

Waste management is a critical problem for every country, whether it is developed or developing. Selecting and managing waste are a critical part of preserving the environment and maximizing resource efficiency. In addition to reducing trash and disposal, reusable items are predicted to be of great benefit since they lessen our dependence on raw materials. The usage of compostable trash may be expanded outside fertilizers and dung after the metallic, chemicals, and glass items have been recycled. After a good scrubbing, the glass may be broken down and remelted to create new items. Reusing waste items via garbage recovery is one of the best methods to do so. This document outlines the steps that must be taken to maximize the use of garbage. This work describes a reusable industrial robot arm for grasping and sorting things depending on the resources they contain. Gripping, motion control, and object material categorization are all integrated into a full-automation, reusable system architecture in this study. LeNet also was adjusted to classify garbage into cartons and plastics using an artificial intelligent technique, with the use of a customized LeNet model. Movement in terms of moving the robot in the most efficient way possible, the robot's grabbing, and categorization were incorporated into the movement design process. The system's grabbing and object categorization success rates and computation time are calculated as metrics for evaluation.


Assuntos
Resíduos de Alimentos , Procedimentos Cirúrgicos Robóticos , Robótica , Gerenciamento de Resíduos , Inteligência Artificial , Resíduos
2.
Artigo em Inglês | MEDLINE | ID: mdl-34831960

RESUMO

COVID-19 declared as a pandemic that has a faster rate of infection and has impacted the lives and the country's economy due to forced lockdowns. Its detection using RT-PCR is required long time and due to which its infection has grown exponentially. This creates havoc for the shortage of testing kits in many countries. This work has proposed a new image processing-based technique for the health care systems named "C19D-Net", to detect "COVID-19" infection from "Chest X-Ray" (XR) images, which can help radiologists to improve their accuracy of detection COVID-19. The proposed system extracts deep learning (DL) features by applying the InceptionV4 architecture and Multiclass SVM classifier to classify and detect COVID-19 infection into four different classes. The dataset of 1900 Chest XR images has been collected from two publicly accessible databases. Images are pre-processed with proper scaling and regular feeding to the proposed model for accuracy attainments. Extensive tests are conducted with the proposed model ("C19D-Net") and it has succeeded to achieve the highest COVID-19 detection accuracy as 96.24% for 4-classes, 95.51% for three-classes, and 98.1% for two-classes. The proposed method has outperformed well in expressions of "precision", "accuracy", "F1-score" and "recall" in comparison with most of the recent previously published methods. As a result, for the present situation of COVID-19, the proposed "C19D-Net" can be employed in places where test kits are in short supply, to help the radiologists to improve their accuracy of detection of COVID-19 patients through XR-Images.


Assuntos
COVID-19 , Aprendizado Profundo , Controle de Doenças Transmissíveis , Humanos , Redes Neurais de Computação , SARS-CoV-2 , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...