Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(25): 17877-17887, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38836171

RESUMO

The precise manipulation of electromagnetic and thermoelectric characteristics in the miniaturization of electronic devices offers a promising foundation for practical applications in quantum computing. Double perovskites characterized by stability, non-toxicity, and spin polarization, have emerged as appealing candidates for spintronic applications. This study explores the theoretical elucidation of the influence of iridium's 5d electrons on the magnetic characteristics of Sr2AIrO6 (A = Y, Lu, Sc) with WIEN2k code. The determined formation energies confirm the thermodynamic stability while an analysis of band structure and the density of states (DOS) reveals a half-metallic ferromagnetic character. This characteristic is comprehensible through the analysis of exchange constants and exchange energies. The current analysis suggests that crystal field effects, a fundamental hybridization process and exchange energies contribute to the emergence of ferromagnetism due to electron-spin interactions. Finally, assessments of electrical and thermal conductivities, Seebeck coefficient, power factor, figure of merit and magnetic susceptibility are conducted to assess the potential of the investigated materials for the applications in thermoelectric devices.

2.
Phys Chem Chem Phys ; 26(15): 12210-12218, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38592224

RESUMO

The spin coating method was used to deposit MAPbI2Br films on FTO-glass substrates. Zn2+ (zinc) doping was used for these films at intensity rates of 2% and 4%, respectively. XRD analysis proved that MAPbI2Br films had a cubic structure and a crystalline character. 2% Zn doping into the MAPbI2Br film had a modest large grain size (38.09 nm), Eg (1.95 eV), high refractive index (2.66), and low extinction coefficient (1.67), according to XRD and UV-vis analyses. To facilitate and enhance carrier transit, at contacts as well as throughout the bulk material, the perovskite's trap-state densities decreased. The predicted MAPbI2Br valence and conduction band edges are -5.44 and -3.52, respectively. The conduction band (CB) edge of the film that was exposed to Zn atoms has been pressed towards the lower value, assembly it a better material for solar cells. EIS is particularly useful for understanding charge carrier transport, recombination mechanisms, and the influence of different interfaces within the device structure. Jsc is 11.09 mA cm-2, Voc is 1.09, PCE is 9.372% and FF is 0.777. The cell made with the 2% Zn doped into the MAPbI2Br film demonstrated a superior device.

3.
ACS Omega ; 9(16): 18202-18211, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38680326

RESUMO

In this study, solar cells based on pure Cs2AgBiBr6 and Al-doped metal were fabricated using the sol-gel spin-coating technique. X-ray diffraction (XRD) analysis confirmed the formation of cubic-structured films for both pure and Al-doped. Notably, the grain size of Al-doped Cs2AgBiBr6 was observed to be larger than that of its pure counterpart. The optical properties of these films were investigated using UV-vis spectroscopy, revealing essential parameters such as the bandgap energy (Eg), refractive index (n), extinction coefficients (k), and dielectric constant. While the pure film exhibited an Eg of 1.91 eV, the Al-doped film demonstrated a slightly lower Eg of 1.82 eV. Utilization of these films in solar cell fabrication yielded intriguing results. The J-V curve shows that the pure solar cell displayed a short-circuit current density (Jsc) of 5.01 mA/cm2, a fill factor (FF) of 0.67, an open-circuit voltage (Voc) of 0.89 V, and an efficiency of 3.02%. Al doping led to improvements, with an increase in Voc to 0.91 V, FF to 0.71, and Jsc to 5.29 mA/cm2. Consequently, the overall efficiency surged to 3.40%, marking a substantial 12.5% enhancement compared with the pure solar cell. These findings underscore the efficacy of Al doping in enhancing the performance of Cs2AgBiBr6-based solar cells.

4.
RSC Adv ; 14(8): 5440-5448, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38348293

RESUMO

Lead-free halide double perovskite (LFHDP) Cs2AgBiBr6 has emerged as a promising alternative to traditional lead-based perovskites (LBPs), offering notable advantages in terms of chemical stability and non-toxicity. However, the efficiency of Cs2AgBiBr6 solar cells faces challenges due to their wide bandgap (Eg). As a viable strategy to settle this problem, we consider optimization of the optical and photovoltaic properties of Cs2AgBiBr6 by Gallium (Ga) substitution. The synthesized Cs2Ag0.95Ga0.05BiBr6 is rigorously characterized by means of X-ray diffraction (XRD), UV-vis spectroscopy, and solar simulator measurements. XRD analysis reveals shifts in peak positions, indicating changes in the crystal lattice due to Ga substitution. The optical analysis demonstrates a reduction in the Eg, leading to improvement of the light absorption within the visible spectrum. Importantly, the Cs2Ag0.95Ga0.05BiBr6 solar cell exhibits enhanced performance, as evidenced by higher values of open circuit voltage (Voc), short-circuit current (Jsc), and fill factor (FF), which are 0.94 V, 6.01 mA cm-2, and 0.80, respectively: this results in an increased power conversion efficiency (PCE) from 3.51% to 4.52%. This research not only helps to overcome film formation challenges, but also enables stable Cs2Ag0.95Ga0.05BiBr6 to be established as a high-performance material for photovoltaic applications. Overall, our development contributes to the advancement of environmentally friendly solar technologies.

5.
J Chem Phys ; 160(3)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38230950

RESUMO

The semiconductor/insulator blends for organic field-effect transistors are a potential solution to improve the charge transport in the active layer by inducing phase separation in the blends. However, the technique is less investigated for long-chain conducting polymers such as Poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno [3,2-b]thiophene)] (DPPDTT), and lateral phase separation is generally reported due to the instability during solvent evaporation, which results in degraded device performance. Herein, we report how to tailor the dominant mechanism of phase separation in such blends and the molecular assembly of the polymer. For DPPDTT/PMMA blends, we found that for higher DPPDTT concentrations (more than 75%) where the vertical phase separation mechanism is dominant, PMMA assisted in the self-assembly of DPPDTT to form nanowires and micro-transport channels on top of PMMA. The formation of nanowires yielded 13 times higher mobility as compared to pristine devices. For blend ratios with DPPDTT ≤ 50%, both the competing mechanisms, vertical and lateral phase separation, are taking place. It resulted in somewhat lower charge carrier mobilities. Hence, our results show that by systematic tuning of the blend ratio, PMMA can act as an excellent binding material in long-chain polymers such as DPPDTT and produce vertically stratified and aligned structures to ensure high mobility devices.

6.
Heliyon ; 9(11): e21702, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027903

RESUMO

Recently, all inorganic double perovskites have drawn a lot of interest as promising solar materials. The optical, structural, thermoelectric, electronic, and mechanical properties of double halide perovskites A2LiGaI6 (A = Cs, Rb) are explored via first-principles calculations with the WIEN2k code, using GGA PBEsol and TB-mBJ potentials. The majority of perovskite materials utilized in the highest-performing solar cells have bandgaps ranging between 1.48 and 1.62 eV. The compounds A2LiGaI6 (A = Cs, Rb) have a direct bandgap of 1.51 eV and 1.55 eV, respectively, and are expected to be useful in solar cells. The optical study shows that there are large absorption bands in the visible region, as determined by the dielectric constant, absorption, and other dependent factors. Their potential for use in solar cells is increased by their absorption in the visible part. The BoltzTraP code has been used to perform thermoelectric studies to assess the electrical, thermal conductivities, and Seebeck coefficient. They are important for construction of thermoelectric generators that harvest heat energy because of their high figure of merit and incredibly low thermal conductivity of lattice at ambient temperature. Furthermore, by examining the spectroscopic limit maximum efficiency, up to 30 % efficiency is predicted for both compositions, which paves the way for the applicability of them in solar energy conversion.

7.
ACS Omega ; 8(45): 42390-42397, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38024666

RESUMO

Manganese-doped bismuth ferrites were synthesized using the coprecipitation method with the green extract Azadirachta indica. Our incorporation of the transition element, manganese, into bismuth ferrites tackles the challenge of increased leakage current often observed in intrinsic bismuth ferrites. We gained key insights through a comprehensive examination of the structural, dielectric, and optical properties of these materials, utilizing Fourier transform infrared spectroscopy (FTIR), impedance spectroscopy, and UV-visible spectroscopy, respectively. The formation of an octahedral geometry was confirmed using the FTIR technique. UV-visible spectroscopy indicated that 2% Mn doping is optimal, while we obtained a low band gap energy (2.21 eV) and high refractive index (3.010) at this amount of doping. The manufactured materials exhibited the typical ferrite-like dielectric response, that is, the dielectric parameter gradually decreased as the frequency increased and then stayed constant in the high-frequency range. Using the diphenylpicrylhydrazyl (DPPH) free radical assay, we also examined the antioxidant activity of bismuth ferrites. We concluded that among different Mn-doped BiFeMnO3-based nanomaterials, the 2 wt % Mn-doped BiFeMnO3 shows the highest antioxidant activity. This finding substantiates the efficacy of the optimized material with regard to its potent antioxidant activity, positioning it as a promising candidate for potential biomedical applications.

8.
R Soc Open Sci ; 10(6): 221272, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37325589

RESUMO

Long-standing research efforts have enabled the widespread introduction of organic field-effect transistors (OFETs) in next-generation technologies. Concurrently, environmental and operational stability is the major bottleneck in commercializing OFETs. The underpinning mechanism behind these instabilities is still elusive. Here we demonstrate the effect of ambient air on the performance of p-type polymer field-effect transistors. After exposure to ambient air, the device showed significant variations in performance parameters for around 30 days, and then relatively stable behaviour was observed. Two competing mechanisms influencing environmental stability are the diffusion of moisture and oxygen in the metal-organic interface and the active organic layer of the OFET. We measured the time-dependent contact and channel resistances to probe which mechanism is dominant. We found that the dominant role in the degradation of the device stability is the channel resistance rather than the contact resistance. Through time-dependent Fourier transform infrared (FTIR) analysis, we systematically prove that moisture and oxygen cause performance variation in OFETs. FTIR spectra revealed that water and oxygen interact with the polymer chain and perturb its conjugation, thus resulting in degraded performance of the device upon prolonged exposure to ambient air. Our results are important in addressing the environmental instability of organic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...