Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 6702, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795257

RESUMO

Interferon regulating factor 5 (IRF5) is a multifunctional regulator of immune responses, and has a key pathogenic function in gut inflammation, but how IRF5 is modulated is still unclear. Having performed a kinase inhibitor library screening in macrophages, here we identify protein-tyrosine kinase 2-beta (PTK2B/PYK2) as a putative IRF5 kinase. PYK2-deficient macrophages display impaired endogenous IRF5 activation, leading to reduction of inflammatory gene expression. Meanwhile, a PYK2 inhibitor, defactinib, has a similar effect on IRF5 activation in vitro, and induces a transcriptomic signature in macrophages similar to that caused by IRF5 deficiency. Finally, defactinib reduces pro-inflammatory cytokines in human colon biopsies from patients with ulcerative colitis, as well as in a mouse colitis model. Our results thus implicate a function of PYK2 in regulating the inflammatory response in the gut via the IRF5 innate sensing pathway, thereby opening opportunities for related therapeutic interventions for inflammatory bowel diseases and other inflammatory conditions.


Assuntos
Benzamidas/farmacologia , Quinase 2 de Adesão Focal/metabolismo , Inflamação/prevenção & controle , Fatores Reguladores de Interferon/metabolismo , Pirazinas/farmacologia , Sulfonamidas/farmacologia , Animais , Células Cultivadas , Colite/genética , Colite/metabolismo , Colite/prevenção & controle , Citocinas/genética , Citocinas/metabolismo , Quinase 2 de Adesão Focal/genética , Perfilação da Expressão Gênica/métodos , Células HEK293 , Humanos , Inflamação/genética , Inflamação/metabolismo , Fatores Reguladores de Interferon/genética , Intestinos/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fosforilação/efeitos dos fármacos , Células RAW 264.7
2.
J Transl Autoimmun ; 3: 100048, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32743529

RESUMO

BACKGROUND: Improved knowledge of different biomarkers is crucial for early diagnosis of rheumatic diseases and to provide important insights for clinical management. In this study, we evaluated the seroreactivity of patients with different connective tissue diseases (CTDs) (rheumatoid arthritis, RA; systemic lupus erythematosus, SLE; systemic sclerosis, SSc; and Sjogren's syndrome, SSj) to interferon regulatory factor 5 (IRF5) peptide and homologs derived from Epstein-Barr virus (EBV) and Mycobacterium avium subsp. paratuberculosis (MAP). Antigen-induced arthritis (AIA) experiments have been performed in control and IRF5 conditional knockout mice to reinforce the hypothesis that antibodies generated against the three homologous peptides are cross-reactive. METHODS: Reactivity against wild-type (wt) and citrullinated (cit) IRF5 (IRF5424-434), MAP (MAP_402718-32) and EBV (BOLF1305-320) peptides were tested by indirect ELISA in sera from 100 RA patients, 54 patients with other CTDs (14 SLE, 28 SSc and 12 SSj) and 100 healthy subjects (HCs). Antibody responses to the same wt peptides have been tested in AIA mouse sera after immunization with complete Freud's adjuvant (CFA) and methylated bovine serum albumin (mBSA) to induce arthritis in the knee joint. RESULTS: BOLF1, MAP_4027 and IRF5 peptides triggered different antibody responses in CTD diseases with a stronger reactivity in RA (p=0.0001). Similar trends were observed in AIA mice with significantly higher reactivity after 7 days from induction of arthritis. We also found statistically significant differences in antibody responses between SSc and HCs for BOLF1 (p=0.003), MAP_4027 (p=0.0076) and IRF5 (p=0.0042). Peripheral reactivity to cit peptides was lower compared to their wt counterparts, except for cit-MAP_402718-32, which induced stronger responses in RA than wt-MAP_402718-32 (46% vs. 26%, p=0.0170). Conclusion(s): Our results show differential antibody responses to BOLF1, MAP_4027 and IRF5 peptides among CTDs, highlighting their potential as diagnostic biomarkers in these diseases. Experiments performed in IRF5 conditional knockout mice support the hypothesis of cross-reactivity between the investigated homologous antigens.

3.
FEBS J ; 286(9): 1624-1637, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30199605

RESUMO

Interferon regulatory factor 5 (IRF5) belongs to a family of transcription factors, originally implicated in antiviral responses and interferon production. However, studies conducted in different laboratories over the last decade have placed IRF5 as a central regulator of the inflammatory response. It has become clear that IRF5 contributes to the pathogenesis of many inflammatory and autoimmune diseases, such as rheumatoid arthritis, inflammatory bowel disease and systemic lupus erythematosus. Given the role of IRF5 in physiology and disease, IRF5 represents a potential therapeutic target. However, despite a significant interest from the pharmaceutical industry, inhibitors that interfere with the IRF5 pathway remain elusive. Here, we review the advances made by various studies in targeting multiple steps of signalling leading to IRF5 activation with their therapeutic potential, and the possible complications of such strategies are discussed.


Assuntos
Doenças Autoimunes/metabolismo , Inflamação/metabolismo , Fatores Reguladores de Interferon/fisiologia , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/genética , DNA/metabolismo , Dimerização , Regulação da Expressão Gênica/efeitos dos fármacos , Terapia Genética , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Fatores Reguladores de Interferon/antagonistas & inibidores , Fatores Reguladores de Interferon/química , Fatores Reguladores de Interferon/genética , Terapia de Alvo Molecular , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Mapeamento de Interação de Proteínas , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptores Toll-Like/fisiologia , Transcrição Gênica
4.
Mol Syst Biol ; 11(3): 790, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26148352

RESUMO

Although a great deal is known about the signaling events that promote nuclear translocation of NF-κB, how cellular biophysics and the microenvironment might regulate the dynamics of this pathway is poorly understood. In this study, we used high-content image analysis and Bayesian network modeling to ask whether cell shape and context features influence NF-κB activation using the inherent variability present in unperturbed populations of breast tumor and non-tumor cell lines. Cell­cell contact, cell and nuclear area, and protrusiveness all contributed to variability in NF-κB localization in the absence and presence of TNFα. Higher levels of nuclear NF-κB were associated with mesenchymal-like versus epithelial-like morphologies, and RhoA-ROCK-myosin II signaling was critical for mediating shape-based differences in NF-κB localization and oscillations. Thus, mechanical factors such as cell shape and the microenvironment can influence NF-κB signaling and may in part explain how different phenotypic outcomes can arise from the same chemical cues.


Assuntos
Mama/citologia , Mama/metabolismo , Núcleo Celular/metabolismo , NF-kappa B/metabolismo , Teorema de Bayes , Mama/patologia , Linhagem Celular , Forma Celular , Microambiente Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Humanos , Células MCF-7 , Transporte Proteico , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...