Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animal ; 11(2): 335-344, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27476550

RESUMO

Responses to changes in dietary Lys and other essential amino acid (AA) concentrations were evaluated in 480 male and female broilers originating from two lines divergently selected for high (pHu+) or low (pHu-) ultimate pH (pHu) of breast muscle. The two genetic lines were fed with two grower isoenergetic diets differing in both true digestible Lys (control=10.2 g/kg and experimental=7.0 g/kg) and amounts of other essential AA calculated in relation to Lys, which were sufficient for the control diet or in excess for the experimental diet. There were six repetitions per treatment. Birds were weighed individually at days 0, 21, 28 and 43. Feed consumption was recorded per pen and feed conversion was calculated over the growing period. The physical activity and walking ability of broilers were recorded during the whole rearing period. Breast and leg yield, and abdominal fat percentage were measured at 43 days of age, as were pHu, color, drip and cooking loss, Warner-Bratzler shear force, and curing-cooking yield of the breast Pectoralis major and pHu of the thigh Sartorius muscle. Divergent selection greatly affected most breast meat quality traits without significantly changing growth rate or feed efficiency. When subjected to a variation in dietary intake of AA, birds from the two genotypes responded in a similar way in terms of animal's growth, feed efficiency, body composition and meat quality traits. Although line and diet did not affect physical or feeding activities of the broilers, a significant effect of line-by-diet interaction was observed on gait score. Contrary to the pHu- birds, the walking ability of pHu+ birds was impaired when fed the control diet that favored growth and breast muscle development and limited storage of carbohydrate in muscle.


Assuntos
Ração Animal/análise , Dieta/veterinária , Carne/análise , Músculos Peitorais/anatomia & histologia , Aminoácidos/metabolismo , Animais , Composição Corporal , Cruzamento , Galinhas/anatomia & histologia , Galinhas/genética , Feminino , Concentração de Íons de Hidrogênio , Masculino , Músculo Esquelético/metabolismo , Músculos Peitorais/fisiologia , Seleção Genética
2.
J Anim Sci ; 93(9): 4524-31, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26440351

RESUMO

The impact of divergent selection based on the ultimate pH (pHu) of pectoralis major (P. major) muscle on the chemical, biochemical, and histological profiles of the muscle and sensorial quality of meat was investigated in broiler chickens. The protein, lipid, DM, glycogen and lactate content, glycolytic potential, proteolysis, lipid and protein oxidation index, muscle fiber cross-sectional area, capillary density, and collagen surface were determined on the breast P. major muscle of 6-wk-old broilers issued from the high-pHu (pHu+) and low-pHu (pHu-) lines. Sensory attributes were also evaluated on the breast (roasted or grilled) and thigh (roasted) meat of the 2 lines. Protein, lipid, and DM content of P. major muscle were not affected by selection ( > 0.05). However, the P. major muscle of the pHu+ line was characterized by lower residual glycogen (-16%; ≤ 0.001) and lactate (-14%; ≤ 0.001) content and lower glycolytic potential (-14%; ≤ 0.001) compared with the pHu- line. Although the average cross-sectional area of muscle fibers and surface occupied by collagen were similar ( > 0.05) in both lines, fewer capillaries per fiber (-15%; ≤ 0.05) were observed in the pHu+ line. The pHu+ line was also characterized by lower lipid oxidation (thiobarbituric acid reactive substance index: -23%; ≤ 0.05) but protein oxidation and proteolysis index were not different ( > 0.05) between the 2 lines. At the sensory level, selection on breast muscle pHu mainly affected the texture of grilled and roast breast meat, which was judged significantly more tender ( ≤ 0.001) in the pHu+ line, and the acid taste, which was less pronounced in the roasted breast meat of the pHu+ line ( ≤ 0.002). This study highlighted that selection based on pHu does not affect the chemical composition and structure of breast meat. However, by modifying muscle blood supply and glycogen turnover, it affects meat acidity and oxidant status, both of which are likely to contribute to the large differences in texture observed between the 2 lines.


Assuntos
Carne/análise , Seleção Genética , Animais , Galinhas/genética , Galinhas/metabolismo , Glicogênio/análise , Glicólise , Concentração de Íons de Hidrogênio , Ácido Láctico , Músculo Esquelético/metabolismo
3.
J Anim Sci ; 92(9): 3816-24, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25006074

RESUMO

Genetic parameters for ultimate pH of pectoralis major muscle (PM-pHu) and sartorius muscle (SART-pHu); color parameters L*, a*, b*; logarithm of drip loss (LogDL) of pectoralis major (PM) muscle; breast meat yield (BMY); thigh and drumstick yield (TY); abdominal fat percentage (AFP); and BW at 6 wk (BW6) were estimated in 2 lines of broiler chickens divergently selected for PM-pHu. Effects of selection on all the previous traits and on glycolytic potential, pectoralis major muscle pH at 15 min postmortem, curing-cooking yield (CCY), cooking loss (CL), and Warner-Bratzler shear force (WBSF) of the PM muscle were also analyzed after 5 generations. Strong genetic determinism of PM-pHu was observed, with estimated h(2) of 0.57 ± 0.02. There was a significant positive genetic correlation (rg) between PM-pHu and SART-pHu (0.54 ± 0.04), indicating that selection had a general rather than a specific effect on energy storage in skeletal muscles. The h(2) estimates of L*, a*, and b* parameters were 0.58 ± 0.02, 0.39 ± 0.02, and 0.48 ± 0.02, respectively. Heritability estimates for TY, BMY, and AFP were 0.39 ± 0.04, 0.52 ± 0.01, and 0.71 ± 0.02, respectively. Our results indicated different genetic control of LogDL and L* of the meat between the 2 lines; these traits had a strong rg with PM-pHu in the line selected for low ultimate pH (pHu) value (pHu-; -0.80 and -0.71, respectively), which was not observed in the line selected for high pHu value (pHu+; -0.04 and -0.29, respectively). A significant positive rg (0.21 ± 0.04) was observed between PM-pHu and BMY but not between PM-pHu and BW6, AFP, or TY. Significant phenotypic differences were observed after 5 generations of selection between the 2 lines. The mean differences (P < 0.001) in pHu between the 2 lines were 0.42 and 0.21 pH units in the breast and thigh muscle, respectively. Breast meat in the pHu+ line exhibited lower L* (-5 units; P < 0.001), a* (-0.22 units; P < 0.001), b* (-1.53 units; P < 0.001), and drip loss (-1.6 units; P < 0.001) than in the pHu- line. Breast meat of the pHu+ line was also characterized by greater CCY (+6.1 units; P < 0.001), lower CL (-1.66 units; P < 0.01), and lower WBSF after cooking (-5.1 units; P < 0.001) compared to the pHu- line. This study highlighted that selection based on pHu can be effective in improving the processing ability of breast meat and reducing the incidence of meat quality defects without affecting chicken growth performance.


Assuntos
Composição Corporal/genética , Carne/normas , Músculo Esquelético/fisiologia , Animais , Galinhas/genética , Galinhas/fisiologia , Glicólise/genética , Concentração de Íons de Hidrogênio , Fenótipo , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...