Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 131(42): 15212-24, 2009 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-19795866

RESUMO

Absolute rate constants were determined for the abstraction of hydrogen atoms from (OC)(3)Fe(mu-SH)(2)Fe(CO)(3) (Fe(2)S(2)H(2)) and (OC)(3)Fe(mu-SCH(3))(mu-SH)Fe(CO)(3) (Fe(2)S(2)MeH) by benzyl radicals in benzene. From the temperature-dependent rate data for Fe(2)S(2)H(2), DeltaH(++) and DeltaS(++) were determined to be 2.03 +/- 0.56 kcal/mol and -19.3 +/- 1.7 cal/(mol K), respectively, giving k(abs) = (1.2 +/- 0.49) x 10(7) M(-1) s(-1) at 25 degrees C. For Fe(2)S(2)MeH, DeltaH(++) and DeltaS(++) were determined to be 1.97 +/- 0.46 kcal/mol and -18.1 +/- 1.5 cal/(mol K), respectively, giving k(abs) = (2.3 +/- 0.23) x 10(7) M(-1) s(-1) at 25 degrees C. Temperature-dependent rate data are also reported for hydrogen atom abstraction by benzyl radical from thiophenol (DeltaH(++) = 3.62 +/- 0.43 kcal/mol, DeltaS(++) = -21.7 +/- 1.3 cal/(mol K)) and H(2)S (DeltaH(++) = 5.13 +/- 0.99 kcal/mol, DeltaS(++) = -24.8 +/- 3.2 cal/(mol K)), giving k(abs) at 25 degrees C of (2.5 +/- 0.33) x 10(5) and (4.2 +/- 0.51) x 10(3) M(-1) s(-1), respectively, both having hydrogen atom abstraction rate constants orders of magnitude slower than those of Fe(2)S(2)H(2) and Fe(2)S(2)MeH. Thus, Fe(2)S(2)MeH is 100-fold faster than thiophenol, known as a fast donor. All rate constants are reported per abstractable hydrogen atom (k(abs)/M(-1) s(-1)/H). DFT calculations predict S-H bond strengths of 73.1 and 73.2 kcal/mol for Fe(2)S(2)H(2) and Fe(2)S(2)MeH, respectively. Free energy and NMR chemical shift calculations confirm the NMR assignments and populations of Fe(2)S(2)H(2) and Fe(2)S(2)MeH isomers. Derived radicals Fe(2)S(2)H(*) and Fe(2)S(2)Me(*) exhibit singly occupied HOMOs with unpaired spin density distributed between the two Fe atoms, a bridging sulfur, and d(sigma)-bonding between Fe centers. The S-H solution bond dissociation free energy (SBDFE) of Fe(2)S(2)MeH was found to be 69.4 +/- 1.7 kcal/mol by determination of its pK(a) (16.0 +/- 0.4) and the potential for the oxidation of the anion, Fe(2)S(2)Me(-), of -0.26 +/- 0.05 V vs ferrocene in acetonitrile (corrected for dimerization of Fe(2)S(2)Me(*)). This SBDFE for Fe(2)S(2)MeH corresponds to a gas-phase bond dissociation enthalpy (BDE) of 74.2 kcal/mol, in satisfactory agreement with the DFT value of 73.2 kcal/mol. Replacement of the Fe-Fe bond in Fe(2)S(2)MeH with bridging mu-S (Fe(2)S(3)MeH) or mu-CO (Fe(2)S(2)(CO)MeH) groups leads to (DFT) BDEs of 72.8 and 66.2 kcal/mol, the latter indicating dramatic effects of the choice of bridge structure on S-H bond strengths. These results provide a model for the reactivity of hydrosulfido sites of low-valent heterogeneous FeS catalysts.

2.
J Org Chem ; 69(4): 1020-7, 2004 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-14961649

RESUMO

Arrhenius rate expressions were determined for the abstraction of bromine atom from 2-phenethyl bromide by tri-n-butylstannyl radical (Bu(3)Sn(*)) in benzene using transient absorption spectroscopy, (log(k(abs,Br)/M(-1) s(-1)) = (9.21 +/- 0.20) - (2.23 +/- 0.28)/theta, theta = 2.3RT kcal/mol, errors are 2sigma) and for the abstraction of sulfur atom from propylene sulfide to form propylene, (log(k(s)/M(-1) s(-1)) = (8.75 +/- 0.91) - (2.35 +/-1.33)/theta). Rate constants for reactions of organic bromides, RBr, with Bu(3)Sn(*) were found to vary as R = benzyl (15.6) > thiiranylmethyl (6.2) > oxiranylmethyl (3.1) > cyclopropylmethyl (1.3) > 2-phenethyl (1.0), with k(abs,Br) = 6.8 x 10(7) M(-1) s(-1) at 353 K for 2-phenethyl bromide. Bromine abstraction from alpha-bromomethylthiirane is about 7-fold faster than sulfur atom abstraction and is comparable to the reactivity of a secondary alkyl bromide. The potential surface for the vinylthiomethyl --> allylthiyl radical rearrangement at UB3LYP/6-31G(d) and UB3LYP/6-311+G(2d,2p) levels of theory suggests that the thiiranylmethyl radical is produced about 9 kcal/mol above the allylthiyl radical on the rearrangement surface, consistent with the observed enhancement of the Br atom abstraction from the thiirane and with synchronous C-S bond scission of the thiirane ring. The selectivities reported in this work for S vs Cl and Br abstraction provide applications for radical-based synthesis and new competition basis rate expressions for trialkylstannyl radicals.

3.
J Org Chem ; 67(25): 9016-22, 2002 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-12467424

RESUMO

The equilibrium acidities (pK(AH)s) and the oxidation potentials of the congugate anions [E(ox)(A(-))s] were determined in dimethyl sulfoxide (DMSO) for eight ketones of the structure GCOCH(3) and 20 of the structure RCOCH(2)G, (where R = alkyl, phenyl and G = alkyl, aryl). The homolytic bond dissociation energies (BDEs) for the acidic C-H bonds of the ketones were estimated using the equation BDE(AH) = 1.37pK(AH) + 23.1E(ox)(A(-)) + 73.3. While the equilibrium acidities of GCOCH(3) were found to be dependent on the remote substituent G, the BDE values for the C-H bonds remained essentially invariant (93.5 +/- 0.5 kcal/mol). A linear correlation between pK(AH) values and [E(ox)(A(-))s] was found for the ketones. For RCOCH(2)G ketones, both pK(AH) and BDE values for the adjacent C-H bonds are sensitive to the nature of the substituent G. However, the steric bulk of the aryl group tends to exert a leveling effect on BDEs. The BDE of alpha-9-anthracenylacetophenone is higher than that of alpha-2-anthracenylacetophenone by 3 kcal/mol, reflecting significant steric inhibition of resonance in the 9-substituted system. A range of 80.7-84.4 kcal/mol is observed for RCOCH(2)G ketones. The results are discussed in terms of solvation, steric, and resonance effects. Ab initio density functional theory (DFT) calculations are employed to illustrate the effect of steric interactions on radical and anion geometries. The DFT results parallel the trends in the experimental BDEs of alpha-arylacetophenones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...