Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38917049

RESUMO

G protein-coupled receptor G2A was postulated to be a promising target for the development of new therapeutics in neuropathic pain, acute myeloid leukemia, and inflammation. However, there is still a lack of potent, selective, and drug-like G2A agonists to be used as a chemical tool or as the starting matter for the development of drugs. In this work, we present the discovery and structure-activity relationship elucidation of a new potent and selective G2A agonist scaffold. Systematic optimization resulted in (3-(pyridin-3-ylmethoxy)benzoyl)-d-phenylalanine (T-10418) exhibiting higher potency than the reference and natural ligand 9-HODE and high selectivity among G protein-coupled receptors. With its favorable activity, a clean selectivity profile, excellent solubility, and high metabolic stability, T-10418 qualifies as a pharmacological tool to investigate the effects of G2A activation.

2.
Sci Adv ; 9(31): eadg8842, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37531421

RESUMO

Host-derived succinate accumulates in the airways during bacterial infection. Here, we show that luminal succinate activates murine tracheal brush (tuft) cells through a signaling cascade involving the succinate receptor 1 (SUCNR1), phospholipase Cß2, and the cation channel transient receptor potential channel subfamily M member 5 (TRPM5). Stimulated brush cells then trigger a long-range Ca2+ wave spreading radially over the tracheal epithelium through a sequential signaling process. First, brush cells release acetylcholine, which excites nearby cells via muscarinic acetylcholine receptors. From there, the Ca2+ wave propagates through gap junction signaling, reaching also distant ciliated and secretory cells. These effector cells translate activation into enhanced ciliary activity and Cl- secretion, which are synergistic in boosting mucociliary clearance, the major innate defense mechanism of the airways. Our data establish tracheal brush cells as a central hub in triggering a global epithelial defense program in response to a danger-associated metabolite.


Assuntos
Acetilcolina , Traqueia , Camundongos , Animais , Traqueia/metabolismo , Transdução de Sinais , Succinatos/metabolismo , Epitélio/metabolismo
3.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430751

RESUMO

Neuropathic pain is a pathological pain state with a broad symptom scope that affects patients after nerve injuries, but it can also arise after infections or exposure to toxic substances. Current treatment possibilities are still limited because of the low efficacy and severe adverse effects of available therapeutics, highlighting an emerging need for novel analgesics and for a detailed understanding of the pathophysiological alterations in the onset and maintenance of neuropathic pain. Here, we show that the novel and highly specific FKBP51 inhibitor SAFit2 restores lipid signaling and metabolism in nervous tissue after nerve injury. More specifically, we identify that SAFit2 restores the levels of the C16 dihydroceramide, which significantly reduces the sensitization of the pain-mediating TRPV1 channel and subsequently the secretion of the pro-inflammatory neuropeptide CGRP in primary sensory neurons. Furthermore, we show that the C16 dihydroceramide is capable of reducing acute thermal hypersensitivity in a capsaicin mouse model. In conclusion, we report for the first time the C16 dihydroceramide as a novel and crucial lipid mediator in the context of neuropathic pain as it has analgesic properties, contributing to the pain-relieving properties of SAFit2.


Assuntos
Neuralgia , Traumatismos do Sistema Nervoso , Camundongos , Animais , Neuralgia/metabolismo , Ceramidas , Analgésicos/farmacologia , Analgésicos/uso terapêutico
4.
Front Pharmacol ; 13: 838782, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308198

RESUMO

Formation of specialized pro-resolving lipid mediators (SPMs) such as lipoxins or resolvins usually involves arachidonic acid 5-lipoxygenase (5-LO, ALOX5) and different types of arachidonic acid 12- and 15-lipoxygenating paralogues (15-LO1, ALOX15; 15-LO2, ALOX15B; 12-LO, ALOX12). Typically, SPMs are thought to be formed via consecutive steps of oxidation of polyenoic fatty acids such as arachidonic acid, eicosapentaenoic acid or docosahexaenoic acid. One hallmark of SPM formation is that reported levels of these lipid mediators are much lower than typical pro-inflammatory mediators including the monohydroxylated fatty acid derivatives (e.g., 5-HETE), leukotrienes or certain cyclooxygenase-derived prostaglandins. Thus, reliable detection and quantification of these metabolites is challenging. This paper is aimed at critically evaluating i) the proposed biosynthetic pathways of SPM formation, ii) the current knowledge on SPM receptors and their signaling cascades and iii) the analytical methods used to quantify these pro-resolving mediators in the context of their instability and their low concentrations. Based on current literature it can be concluded that i) there is at most, a low biosynthetic capacity for SPMs in human leukocytes. ii) The identity and the signaling of the proposed G-protein-coupled SPM receptors have not been supported by studies in knock-out mice and remain to be validated. iii) In humans, SPM levels were neither related to dietary supplementation with their ω-3 polyunsaturated fatty acid precursors nor were they formed during the resolution phase of an evoked inflammatory response. iv) The reported low SPM levels cannot be reliably quantified by means of the most commonly reported methodology. Overall, these questions regarding formation, signaling and occurrence of SPMs challenge their role as endogenous mediators of the resolution of inflammation.

5.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33875597

RESUMO

G protein-coupled receptor 182 (GPR182) has been shown to be expressed in endothelial cells; however, its ligand and physiological role has remained elusive. We found GPR182 to be expressed in microvascular and lymphatic endothelial cells of most organs and to bind with nanomolar affinity the chemokines CXCL10, CXCL12, and CXCL13. In contrast to conventional chemokine receptors, binding of chemokines to GPR182 did not induce typical downstream signaling processes, including Gq- and Gi-mediated signaling or ß-arrestin recruitment. GPR182 showed relatively high constitutive activity in regard to ß-arrestin recruitment and rapidly internalized in a ligand-independent manner. In constitutive GPR182-deficient mice, as well as after induced endothelium-specific loss of GPR182, we found significant increases in the plasma levels of CXCL10, CXCL12, and CXCL13. Global and induced endothelium-specific GPR182-deficient mice showed a significant decrease in hematopoietic stem cells in the bone marrow as well as increased colony-forming units of hematopoietic progenitors in the blood and the spleen. Our data show that GPR182 is a new atypical chemokine receptor for CXCL10, CXCL12, and CXCL13, which is involved in the regulation of hematopoietic stem cell homeostasis.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Animais , Quimiocina CXCL10 , Quimiocina CXCL12 , Quimiocina CXCL13 , Quimiocinas/metabolismo , Células Endoteliais/metabolismo , Feminino , Células HEK293 , Células-Tronco Hematopoéticas/metabolismo , Homeostase , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Quimiocinas/metabolismo , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/fisiologia , beta-Arrestinas/metabolismo
6.
Eur J Med Chem ; 186: 111879, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31780082

RESUMO

Adenosine acts as a powerful signaling molecule via four distinct G protein-coupled receptors, designated A1, A2A, A2B and A3 adenosine receptors (ARs). A2A and A2B ARs are Gs-coupled, while A1 and A3 ARs inhibit cAMP production via Gi proteins. Antagonists for A1 and A3 ARs may be useful for the treatment of (neuro)inflammatory diseases including acute kidney injury and kidney failure, pulmonary diseases, and Alzheimer's disease. In the present study, we optimized the versatile 2-amino-4-phenylthiazole scaffold by introducing substituents at N2 and C5 to obtain A1 and A3 AR antagonists including dual-target compounds. Selective A1 antagonists with (sub)nanomolar potency were produced, e.g. 11 and 13. These compounds showed species differences being significantly more potent at the rat as compared to the human A1 AR, and were characterized as inverse agonists. Several potent and selective A3 AR antagonists, e.g. 7, 8, 17 and 22 (Ki values of 5-9 nM at the human A3 AR) were prepared, which were much less potent at the rat orthologue. Moreover, dual A1/A3 antagonists (10, 18) were developed showing Ki values between 8 and 42 nM. Docking and molecule dynamic simulation studies using the crystal structure of the A1 AR and a homology model of the A3 AR were performed to rationalize the observed structure-activity relationships.


Assuntos
Antagonistas de Receptores Purinérgicos P1/farmacologia , Receptor A1 de Adenosina/metabolismo , Receptor A3 de Adenosina/metabolismo , Tiazóis/farmacologia , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Antagonistas de Receptores Purinérgicos P1/síntese química , Antagonistas de Receptores Purinérgicos P1/química , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química
7.
Purinergic Signal ; 11(3): 389-407, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26126429

RESUMO

Adenosine receptors (ARs) have emerged as new drug targets. The majority of data on affinity/potency and selectivity of AR ligands described in the literature has been obtained for the human species. However, preclinical studies are mostly performed in mouse or rat, and standard AR agonists and antagonists are frequently used for studies in rodents without knowing their selectivity in the investigated species. In the present study, we selected a set of frequently used standard AR ligands, 8 agonists and 16 antagonists, and investigated them in radioligand binding studies at all four AR subtypes, A1, A2A, A2B, and A3, of three species, human, rat, and mouse. Recommended, selective agonists include CCPA (for A1AR of rat and mouse), CGS-21680 (for A2A AR of rat), and Cl-IB-MECA (for A3AR of all three species). The functionally selective partial A2B agonist BAY60-6583 was found to additionally bind to A1 and A3AR and act as an antagonist at both receptor subtypes. The antagonists PSB-36 (A1), preladenant (A2A), and PSB-603 (A2B) displayed high selectivity in all three investigated species. MRS-1523 acts as a selective A3AR antagonist in human and rat, but is only moderately selective in mouse. The comprehensive data presented herein provide a solid basis for selecting suitable AR ligands for biological studies.


Assuntos
Receptores Purinérgicos P1/efeitos dos fármacos , Agonistas do Receptor A1 de Adenosina/metabolismo , Agonistas do Receptor A1 de Adenosina/farmacologia , Antagonistas do Receptor A1 de Adenosina/metabolismo , Antagonistas do Receptor A1 de Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/metabolismo , Agonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/farmacologia , Agonistas do Receptor A3 de Adenosina/metabolismo , Agonistas do Receptor A3 de Adenosina/farmacologia , Antagonistas do Receptor A3 de Adenosina/metabolismo , Antagonistas do Receptor A3 de Adenosina/farmacologia , Animais , Arrestina/metabolismo , Ligação Competitiva/efeitos dos fármacos , Células CHO , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , DNA Complementar/efeitos dos fármacos , DNA Complementar/genética , Humanos , Camundongos , Ratos , Receptor A2A de Adenosina/efeitos dos fármacos , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Receptor A2B de Adenosina/efeitos dos fármacos , Receptor A2B de Adenosina/genética , Receptor A2B de Adenosina/metabolismo , Receptores Purinérgicos P1/genética , Receptores Purinérgicos P1/metabolismo , Especificidade da Espécie , Relação Estrutura-Atividade
8.
J Med Chem ; 55(7): 3331-41, 2012 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-22409573

RESUMO

2-(Acyl)amino-4H-3,1-benzothiazin-4-ones and related thienothiazinones were identified as structurally novel antagonists at adenosine receptors (ARs). 6-Methyl-2-benzoylamino-4H-3,1-benzothiazin-4-one (10d) was found to be a balanced AR antagonist with affinity for all human (h) subtypes (K(i) hA(1) 65.6 nM; hA(2A) 120 nM; hA(2B) 360 nM; hA(3) 30.4 nM), while in rat (r), 10d was a highly potent A(1)-selective antagonist (rA(1) 7.7 nM; rA(2A) 546 nM; rA(2B) 679 nM, rA(3) >10000 nM). 2-(4-Methylbenzoylamino)-4H-3,1-benzothiazin-4-one (10g) was found to be a potent antagonist at human A(2A) (68.8 nM) and A(3) ARs (23.0 nM) with high selectivity versus the other human AR subtypes. In contrast to A(1) and A(3) ARs, A(2A) and A(2B) ARs tolerated bulky 2-acyl substituents. tert-Butyl (4-oxo-4H-3,1-benzothiazin-2-ylcarbamoyl)benzylcarbamate (15g, K(i) hA(2B) 186 nM; hA(2A) 603 nM) and 4-(4-benzylpiperazine-1-carbonyl)-N-(4-oxo-4H-3,1-benzothiazin-2-yl)benzamide (15k, hA(2A) 69.5 nM; hA(2B) 178 nM) were highly selective versus the other AR subtypes. 2-Acylamino-3,1-benzothiazin-4-ones represent novel scaffolds suitable for the development of potent and selective AR antagonists for each of the four receptor subtypes.


Assuntos
Antagonistas de Receptores Purinérgicos P1/síntese química , Tiazinas/síntese química , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Agonistas do Receptor Purinérgico P1/síntese química , Agonistas do Receptor Purinérgico P1/química , Agonistas do Receptor Purinérgico P1/farmacologia , Antagonistas de Receptores Purinérgicos P1/química , Antagonistas de Receptores Purinérgicos P1/farmacologia , Ensaio Radioligante , Ratos , Relação Estrutura-Atividade , Tiazinas/química , Tiazinas/farmacologia , Tiofenos/síntese química , Tiofenos/química , Tiofenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...