Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15402, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965305

RESUMO

The diagnosis of leukemia is a serious matter that requires immediate and accurate attention. This research presents a revolutionary method for diagnosing leukemia using a Capsule Neural Network (CapsNet) with an optimized design. CapsNet is a cutting-edge neural network that effectively captures complex features and spatial relationships within images. To improve the CapsNet's performance, a Modified Version of Osprey Optimization Algorithm (MOA) has been utilized. Thesuggested approach has been tested on the ALL-IDB database, a widely recognized dataset for leukemia image classification. Comparative analysis with various machine learning techniques, including Combined combine MobilenetV2 and ResNet18 (MBV2/Res) network, Depth-wise convolution model, a hybrid model that combines a genetic algorithm with ResNet-50V2 (ResNet/GA), and SVM/JAYA demonstrated the superiority of our method in different terms. As a result, the proposed method is a robust and powerful tool for diagnosing leukemia from medical images.


Assuntos
Algoritmos , Leucemia , Redes Neurais de Computação , Humanos , Leucemia/diagnóstico por imagem , Aprendizado de Máquina , Processamento de Imagem Assistida por Computador/métodos , Bases de Dados Factuais
2.
Artigo em Inglês | MEDLINE | ID: mdl-36834443

RESUMO

The diseases transmitted through vectors such as mosquitoes are named vector-borne diseases (VBDs), such as malaria, dengue, and leishmaniasis. Malaria spreads by a vector named Anopheles mosquitos. Dengue is transmitted through the bite of the female vector Aedes aegypti or Aedes albopictus mosquito. The female Phlebotomine sandfly is the vector that transmits leishmaniasis. The best way to control VBDs is to identify breeding sites for their vectors. This can be efficiently accomplished by the Geographical Information System (GIS). The objective was to find the relation between climatic factors (temperature, humidity, and precipitation) to identify breeding sites for these vectors. Our data contained imbalance classes, so data oversampling of different sizes was created. The machine learning models used were Light Gradient Boosting Machine, Random Forest, Decision Tree, Support Vector Machine, and Multi-Layer Perceptron for model training. Their results were compared and analyzed to select the best model for disease prediction in Punjab, Pakistan. Random Forest was the selected model with 93.97% accuracy. Accuracy was measured using an F score, precision, or recall. Temperature, precipitation, and specific humidity significantly affect the spread of dengue, malaria, and leishmaniasis. A user-friendly web-based GIS platform was also developed for concerned citizens and policymakers.


Assuntos
Aedes , Doenças Transmissíveis , Dengue , Malária , Doenças Transmitidas por Vetores , Animais , Humanos , Mosquitos Vetores/fisiologia , Malária/epidemiologia , Aedes/fisiologia , Dengue/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...