Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 261: 121964, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38941680

RESUMO

Anthropogenic stressors such as urban development, agricultural runoff, and riparian zone degradation impair stream water quality and biodiversity. However, the intricate pathways that connect these stressors at watershed and riparian scales to stream ecosystems-and their interplay with climate and hydrology-remain understudied. In this study, we used Partial Least Squares (PLS) path modeling to examine these pathways and their collective impacts on stream water quality and fish community structures across 233 watersheds in the Great Lakes region. Our study suggests that moderate levels of watershed development enhance overall fish richness, potentially due to increased water temperature and nutrient availability, but reduces both the percentages and richness of cold water and intolerant taxa. Riparian quality exerts indirect effects on water quality with climate and stream order serving as key mediators. Complementing our SEM analysis, we also used Multiple Linear Regression (MLR) models and identified a significant positive relationship between the proportion of clay and agricultural land with TN concentrations. However, TP concentrations are influenced by a more complex set of interactions involving developed areas, soil, and slope. These findings emphasize the necessity of adopting integrated management strategies to preserve the health and integrity of freshwater ecosystems in the Great Lakes region. These strategies should integrate watershed and riparian protection measures while also taking into account the effects of climate change and specific local conditions.

2.
Ecol Evol ; 6(17): 6345-53, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27648248

RESUMO

Species trait data have been used to predict and infer ecological processes and the responses of biological communities to environmental changes. It has also been suggested that, in lieu of trait, data niche differences can be inferred from phylogenetic distance. It remains unclear how variation in trait data may influence the strength and character of ecological inference. Using species-level trait data in community ecology assumes intraspecific variation is small in comparison with interspecific variation. Intraspecific variation across species ranges or within populations may lead to variability in trait data derived from different scales (i.e., local or regional) and methods (i.e., mean or maximum values). Variation in trait data across species can affect community-level relationships. I examined variability in body size, a key trait often measured across taxa. I collected 12 metrics of fish species length (including common and maximum values) for 40 species from literature, online databases, museum collections, and field data. I then tested whether different metrics of fish length could consistently predict observed species range boundary shifts and the impacts of an introduced predator on inland lake fish communities across Ontario, Canada. I also investigated whether phylogenetic signal, an indicator of niche-conservativism, changed among measures. I found strong correlations between length metrics and limited variation across metrics. Accordingly, length was a consistently significant predictor of the response of fish communities to environmental change. Additionally, I found significant evidence of phylogenetic signal in fish length across metrics. Limited variation in length across metrics (within species), in comparison with variation within metrics (across species), made fish species length a reliable predictor at a community-level. When considering species-level trait data from different sources, researchers should examine the potential influence of intraspecific trait variation on data derived by different metrics and at different scales.

3.
Proc Biol Sci ; 282(1812): 20151211, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26180073

RESUMO

Climate change threatens species directly through environmental changes and indirectly through its effects on species interactions. We need tools to predict which species are most vulnerable to these threats. Pairwise species associations and body size are simple but promising predictors of the relative impact of species introduced outside of their historical ranges. We examined the vulnerability of 30 fish species to the impacts of three centrarchid predators that are being introduced to lakes north of their historical range boundaries. Species that were negatively associated with each centrarchid in their historical range were more likely to be lost from lakes with centrarchid introductions. Total body length was most important in predicting impact for the most gape-limited predator. At the regional scale, our method identifies those species most vulnerable to introductions facilitated by climate change and can easily be applied to a range of taxa undergoing range expansions.


Assuntos
Mudança Climática , Peixes/anatomia & histologia , Peixes/fisiologia , Cadeia Alimentar , Distribuição Animal , Animais , Tamanho Corporal , Lagos , Boca/anatomia & histologia , Ontário , Perciformes/anatomia & histologia , Perciformes/fisiologia
4.
Glob Chang Biol ; 21(6): 2227-37, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25556555

RESUMO

There is a poor understanding of the importance of biotic interactions in determining species distributions with climate change. Theory from invasion biology suggests that the success of species introductions outside of their historical ranges may be either positively (biotic acceptance) or negatively (biotic resistance) related to native biodiversity. Using data on fish community composition from two survey periods separated by approximately 28 years during which climate was warming, we examined the factors influencing the establishment of three predatory centrarchids: Smallmouth Bass (Micropterus dolomieu), Largemouth Bass (M. salmoides), and Rock Bass (Ambloplites rupestris) in lakes at their expanding northern range boundaries in Ontario. Variance partitioning demonstrated that, at a regional scale, abiotic factors play a stronger role in determining the establishment of these species than biotic factors. Pairing lakes within watersheds where each species had established with lakes sharing similar abiotic conditions where the species had not established revealed both positive and negative relationships between the establishment of centrarchids and the historical presence of other predatory species. The establishment of these species near their northern range boundaries is primarily determined by abiotic factors at a regional scale; however, biotic factors become important at the lake-to-lake scale. Studies of exotic species invasions have previously highlighted how spatial scale mediates the importance of abiotic vs. biotic factors on species establishment. Our study demonstrates how concepts from invasion biology can inform our understanding of the factors controlling species distributions with changing climate.


Assuntos
Bass/fisiologia , Mudança Climática , Ecossistema , Espécies Introduzidas , Distribuição Animal , Animais , Biodiversidade , Lagos , Ontário , Comportamento Predatório
5.
Ecology ; 94(3): 751-60, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23687900

RESUMO

Although negative relationships between diversity (frequently measured as species richness) and invasibility at neighborhood or community scales have often been reported, realistic natural diversity gradients have rarely been studied at this scale. We recreated a naturally occurring gradient in species richness to test the effects of species richness on community invasibility. In central Texas savannas, as the proportion of woody plants increases (a process known as woody plant encroachment), herbaceous habitat is both lost and fragmented, and native herbaceous species richness declines. We examined the effects of these species losses on invasibility in situ by removing species that occur less frequently in herbaceous patches as woody plant encroachment advances. This realistic species removal was accompanied by a parallel and equivalent removal of biomass with no changes in species richness. Over two springs, the nonnative bunchgrass Bothriochloa ischaemum germinated significantly more often in the biomass-removal treatment than in unmanipulated control plots, suggesting an effect of native plant density independent of diversity. Additionally, significantly more germination occurred in the species-removal treatment than in the biomass-removal treatment. Changes in species richness had a stronger effect on B. ischaemum germination than changes in plant density, demonstrating that niche-related processes contributed more to biotic resistance in this system than did species-neutral competitive interactions. Similar treatment effects were found on transplant growth. Thus we show that woody plant encroachment indirectly facilitates the establishment of an invasive grass by reducing native diversity. Although we found a negative relationship between species richness and invasibility at the scale of plots with similar composition and environmental conditions, we found a positive relationship between species richness and invasibility at larger scales. This apparent paradox is consistent with reports from other systems and may be the result of variation in environmental factors at larger scales similarly influencing both invasibility and richness. The habitat loss and fragmentation associated with woody plant encroachment are two of many processes that commonly threaten biodiversity, including climate change. Many of these processes are similarly likely to increase invasibility via their negative effects on native diversity.


Assuntos
Ecossistema , Espécies Introduzidas , Poaceae/classificação , Poaceae/fisiologia , Demografia , Texas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...