Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(8): 112976, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37590138

RESUMO

We sought to characterize the unique role of somatostatin (SST) in the prelimbic (PL) cortex in mice. We performed slice electrophysiology in pyramidal and GABAergic neurons to characterize the pharmacological mechanism of SST signaling and fiber photometry of GCaMP6f fluorescent calcium signals from SST neurons to characterize the activity profile of SST neurons during exploration of an elevated plus maze (EPM) and open field test (OFT). We used local delivery of a broad SST receptor (SSTR) agonist and antagonist to test causal effects of SST signaling. SSTR activation hyperpolarizes layer 2/3 pyramidal neurons, an effect that is recapitulated with optogenetic stimulation of SST neurons. SST neurons in PL are activated during EPM and OFT exploration, and SSTR agonist administration directly into the PL enhances open arm exploration in the EPM. This work describes a broad ability for SST peptide signaling to modulate microcircuits within the prefrontal cortex and related exploratory behaviors.


Assuntos
Comportamento Exploratório , Somatostatina , Animais , Camundongos , Peptídeos , Cálcio , Neurônios GABAérgicos
2.
Mol Pharm ; 14(4): 1047-1056, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28248115

RESUMO

The receptor tyrosine kinase HER3 has emerged as a therapeutic target in ovarian, prostate, breast, lung, and other cancers due to its ability to potently activate the PI3K/Akt pathway, especially via dimerization with HER2, as well as for its role in mediating drug resistance. Enhanced efficacy of HER3-targeted therapeutics would therefore benefit a wide range of patients. This study evaluated the potential of multivalent presentation, through protein engineering, to enhance the effectiveness of HER3-targeted affibodies as alternatives to monoclonal antibody therapeutics. Assessment of multivalent affibodies on a variety of cancer cell lines revealed their broad ability to improve inhibition of Neuregulin (NRG)-induced HER3 and Akt phosphorylation compared to monovalent analogues. Engineered multivalency also promoted enhanced cancer cell growth inhibition by affibodies as single agents and as part of combination therapy approaches. Mechanistic investigations revealed that engineered multivalency enhanced affibody-mediated HER3 downregulation in multiple cancer cell types. Overall, these results highlight the promise of engineered multivalency as a general strategy for enhanced efficacy of HER3-targeted therapeutics against a variety of cancers.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Regulação para Baixo/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Receptor ErbB-3/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dimerização , Humanos , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Engenharia de Proteínas/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...