Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728427

RESUMO

Adult hematopoietic Stem and Progenitor Cells (HSPCs) reside in the bone marrow hematopoietic niche, which regulates HSPC quiescence, self-renewal, and commitment in a demand-adapted manner. While the complex bone marrow niche is responsible for adult hematopoiesis, evidence exists for simpler, albeit functional and more accessible, extramedullary hematopoietic niches. Inspired by the anecdotal description of retroperitoneal hematopoietic masses occurring at higher frequency upon hormonal dysregulation within the adrenal gland, we hypothesized that the adult adrenal gland could be induced into a hematopoietic supportive environment in a systematic manner, thus revealing mechanisms underlying de novo niche formation in the adult. Here we show that upon splenectomy and hormonal stimulation, the adult adrenal gland of mice can be induced to recruit and host functional HSPCs, capable of serial transplantation, and that this phenomenon is associated with de novo formation of platelet-derived growth factor receptor α (PDGFRα) expressing stromal nodules. We further show in CXCL12-GFP reporter mice that adrenal glands contain a stromal population reminiscent of the CXCL12-Abundant Reticular (CAR) cells which compose the bone marrow HSPC niche. Mechanistically, HSPC homing to hormonally-induced adrenal glands was found dependent on the CXCR4/CXCL12 axis. Mirroring our findings in mice, we found reticular CXCL12+ cells co-expressing master niche-regulator FOXC1 in primary samples from human adrenal myelolipomas, a benign tumor composed of adipose and hematopoietic tissue. Our findings reignite long-standing questions regarding hormonal regulation of hematopoiesis and provide a novel model to facilitate the study of adult-specific inducible hematopoietic niches which may pave the way to therapeutic applications.

2.
Acta Biomater ; 132: 129-148, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-33813090

RESUMO

Hematopoietic stem cells (HSCs) have proven their clinical relevance in stem cell transplantation to cure patients with hematological disorders. Key to their regenerative potential is their natural microenvironment - their niche - in the bone marrow (BM). Developments in the field of biomaterials enable the recreation of such environments with increasing preciseness in the laboratory. Such artificial niches help to gain a fundamental understanding of the biophysical and biochemical processes underlying the interaction of HSCs with the materials in their environment and the disturbance of this interplay during diseases affecting the BM. Artificial niches also have the potential to multiply HSCs in vitro, to enable the targeted differentiation of HSCs into mature blood cells or to serve as drug-testing platforms. In this review, we will introduce the importance of artificial niches followed by the biology and biophysics of the natural archetype. We will outline how 2D biomaterials can be used to dissect the complexity of the natural niche into individual parameters for fundamental research and how 3D systems evolved from them. We will present commonly used biomaterials for HSC research and their applications. Finally, we will highlight two areas in the field of HSC research, which just started to unlock the possibilities provided by novel biomaterials, in vitro blood production and studying the pathophysiology of the niche in vitro. With these contents, the review aims to give a broad overview of the different biomaterials applied for HSC research and to discuss their potentials, challenges and future directions in the field. STATEMENT OF SIGNIFICANCE: Hematopoietic stem cells (HSCs) are multipotent cells responsible for maintaining the turnover of all blood cells. They are routinely applied to treat patients with hematological diseases. This high clinical relevance explains the necessity of multiplication or differentiation of HSCs in the laboratory, which is hampered by the missing natural microenvironment - the so called niche. Biomaterials offer the possibility to mimic the niche and thus overcome this hurdle. The review introduces the HSC niche in the bone marrow and discusses the utility of biomaterials in creating artificial niches. It outlines how 2D systems evolved into sophisticated 3D platforms, which opened the gateway to applications such as, expansion of clinically relevant HSCs, in vitro blood production, studying niche pathologies and drug testing.


Assuntos
Células-Tronco Hematopoéticas , Nicho de Células-Tronco , Materiais Biocompatíveis , Medula Óssea , Diferenciação Celular , Humanos
3.
J Biomed Mater Res A ; 109(1): 54-63, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32418348

RESUMO

Despite advances in biomaterials research, there is no ideal device for replacing weight-bearing soft tissues like menisci or intervertebral discs due to poor integration with tissues and mechanical property mismatch. Designing an implant with a soft and porous tissue-contacting structure using a material conducive to cell attachment and growth could potentially address these limitations. Polycarbonate urethane (PCU) is a soft and tough biocompatible material that can be 3D printed into porous structures with controlled pore sizes. Porous biomaterials of appropriate chemistries can support cell proliferation and tissue ingrowth, but their optimal design parameters remain unclear. To investigate this, porous PCU structures were 3D-printed in a crosshatch pattern with a range of in-plane pore sizes (0 to 800 µm) forming fully interconnected porous networks. Printed porous structures had ultimate tensile strengths ranging from 1.9 to 11.6 MPa, strains to failure ranging from 300 to 486%, Young's moduli ranging from 0.85 to 12.42 MPa, and porosity ranging from 13 to 71%. These porous networks can be loaded with hydrogels, such as collagen gels, to provide additional biological support for cells. Bare PCU structures and collagen-hydrogel-filled porous PCU support robust NIH/3T3 fibroblast cell line proliferation over 14 days for all pore sizes. Results highlight PCU's potential in the development of tissue-integrating medical implants.


Assuntos
Elastômeros/química , Impressão Tridimensional , Próteses e Implantes , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis , Proliferação de Células/efeitos dos fármacos , Módulo de Elasticidade , Hidrogéis , Camundongos , Células NIH 3T3 , Porosidade , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...