Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 112: 206-219, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37327833

RESUMO

Adult hippocampal neurogenesis (AHN) is a process involved in numerous neurodegenerative diseases. Many researchers have described microglia as a key component in regulating the formation and migration of new neurons along the rostral migratory stream. Caspase-3 is a cysteine-aspartate-protease classically considered as one of the main effector caspases in the cell death program process. In addition to this classical function, we have identified the role of this protein as a modulator of microglial function; however, its action on neurogenic processes is unknown. The aim of the present study is to identify the role of Caspase-3 in neurogenesis-related microglial functions. To address this study, Caspase-3 conditional knockout mice in the microglia cell line were used. Using this tool, we wanted to elucidate the role of this protein in microglial function in the hippocampus, the main region in which adult neurogenesis takes place. After the reduction of Caspase-3 in microglia, mutant mice showed a reduction of microglia in the hippocampus, especially in the dentate gyrus region, a region inherently associated to neurogenesis. In addition, we found a reduction in doublecortin-positive neurons in conditional Caspase-3 knockout mice, which corresponds to a reduction in neurogenic neurons. Furthermore, using high-resolution image analysis, we also observed a reduction in the phagocytic capacity of microglia lacking Caspase-3. Behavioral analysis using object recognition and Y-maze tests showed altered memory and learning in the absence of Caspase-3. Finally, we identified specific microglia located specifically in neurogenic niche positive for Galectin 3 which colocalized with Cleaved-Caspase-3 in control mice. Taken together, these results showed the essential role of Caspase-3 in microglial function and highlight the relevant role of this specific microglial phenotype in the maintenance of AHN in the hippocampus.


Assuntos
Caspase 3 , Hipocampo , Microglia , Animais , Camundongos , Caspase 3/metabolismo , Hipocampo/metabolismo , Camundongos Knockout , Microglia/metabolismo , Neurogênese/fisiologia
2.
Front Aging Neurosci ; 13: 632673, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33889082

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread around the globe causing coronavirus disease 2019 (COVID-19). Because it affects the respiratory system, common symptoms are cough and breathing difficulties with fever and fatigue. Also, some cases progress to acute respiratory distress syndrome (ARDS). The acute phase of COVID-19 has been also related to nervous system symptoms, including loss of taste and smell as well as encephalitis and cerebrovascular disorders. However, it remains unclear if neurological complications are due to the direct viral infection of the nervous system, or they appear as a consequence of the immune reaction against the virus in patients who presented pre-existing deficits or had a certain detrimental immune response. Importantly, the medium and long-term consequences of the infection by SARS-CoV-2 in the nervous system remain at present unknown. This review article aims to give an overview of the current neurological symptoms associated with COVID-19, as well as attempting to provide an insight beyond the acute affectation.

3.
Int J Mol Sci ; 21(17)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899400

RESUMO

Neuromuscular disorders (NMDs) affect 1 in 3000 people worldwide. There are more than 150 different types of NMDs, where the common feature is the loss of muscle strength. These disorders are classified according to their neuroanatomical location, as motor neuron diseases, peripheral nerve diseases, neuromuscular junction diseases, and muscle diseases. Over the years, numerous studies have pointed to protein homeostasis as a crucial factor in the development of these fatal diseases. The ubiquitin-proteasome system (UPS) plays a fundamental role in maintaining protein homeostasis, being involved in protein degradation, among other cellular functions. Through a cascade of enzymatic reactions, proteins are ubiquitinated, tagged, and translocated to the proteasome to be degraded. Within the ubiquitin system, we can find three main groups of enzymes: E1 (ubiquitin-activating enzymes), E2 (ubiquitin-conjugating enzymes), and E3 (ubiquitin-protein ligases). Only the ubiquitinated proteins with specific chain linkages (such as K48) will be degraded by the UPS. In this review, we describe the relevance of this system in NMDs, summarizing the UPS proteins that have been involved in pathological conditions and neuromuscular disorders, such as Spinal Muscular Atrophy (SMA), Charcot-Marie-Tooth disease (CMT), or Duchenne Muscular Dystrophy (DMD), among others. A better knowledge of the processes involved in the maintenance of proteostasis may pave the way for future progress in neuromuscular disorder studies and treatments.


Assuntos
Doenças Neuromusculares/fisiopatologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitina/metabolismo , Animais , Humanos , Doenças Neuromusculares/enzimologia , Ubiquitinação
4.
J Clin Med ; 8(10)2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31627485

RESUMO

In neurodegenerative diseases, microglia-mediated neuroinflammation and oxidative stress are central events. Recent genome-wide transcriptomic analyses of microglial cells under different disease conditions have uncovered a new subpopulation named disease-associated microglia (DAM). These studies have challenged the classical view of the microglia polarization state's proinflammatory M1 (classical activation) and immunosuppressive M2 (alternative activation). Molecular signatures of DAM and proinflammatory microglia (highly pro-oxidant) have shown clear differences, yet a partial overlapping gene profile is evident between both phenotypes. The switch activation of homeostatic microglia into reactive microglia relies on the selective activation of key surface receptors involved in the maintenance of brain homeostasis (a.k.a. pattern recognition receptors, PRRs). Two relevant PRRs are toll-like receptors (TLRs) and triggering receptors expressed on myeloid cells-2 (TREM2), whose selective activation is believed to generate either a proinflammatory or a DAM phenotype, respectively. However, the recent identification of endogenous disease-related ligands, which bind to and activate both TLRs and TREM2, anticipates the existence of rather complex microglia responses. Examples of potential endogenous dual ligands include amyloid ß, galectin-3, and apolipoprotein E. These pleiotropic ligands induce a microglia polarization that is more complicated than initially expected, suggesting the possibility that different microglia subtypes may coexist. This review highlights the main microglia polarization states under disease conditions and their leading role orchestrating oxidative stress.

5.
Antioxidants (Basel) ; 9(1)2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31906130

RESUMO

Neuroinflammation is a common feature shared by neurodegenerative disorders, such as Parkinson's disease (PD), and seems to play a key role in their development and progression. Microglia cells, the principal orchestrators of neuroinflammation, can be polarized in different phenotypes, which means they are able to have anti-inflammatory, pro-inflammatory, or neurodegenerative effects. Increasing evidence supports that the traditional Mediterranean dietary pattern is related to the reduction of cognitive decline in neurodegenerative diseases. A considerable intake of plant foods, fish, and extra virgin olive oil (EVOO), as well as a moderate consumption of red wine, all characteristic of the Mediterranean diet (MD), are behind these effects. These foods are especially rich in polyphenols, being the most relevant in the MD hydroxytyrosol (HT) and their derivatives present in EVOO, which have demonstrated a wide array of biological activities. Here, we demonstrate that HT is able to reduce the inflammation induced by two different stimuli: lipopolysaccharide and α-synuclein. We also study the possible molecular mechanisms involved in the anti-inflammatory effect of HT, including the study of nuclear factor kappa B (NF-кB), mitogen-activated protein kinases (MAPKs), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and inflammasome. Our data support the use of HT to prevent the inflammation associated with PD and shed light into the relationship between MD and this neurological disorder.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...