Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36617094

RESUMO

In recent times, we have been witnessing the development of multiple applications and deployment of services through the indoors location of people as it allows the development of services of interest in areas related mainly to security, guiding people, or offering services depending on their localization. On the other hand, at present, the deployment of Wi-Fi networks is so advanced that a network can be found almost anywhere. In addition, security systems are more demanded and are implemented in many buildings. Thus, in order to provide a non intrusive presence detection system, in this manuscript, the development of a methodology is proposed which is able to detect human presence through the channel state information (CSI) of wireless communication networks based on the 802.11n standard. One of the main contributions of this standard is multiple-input multiple-output (MIMO) with orthogonal frequency division multiplexing (OFDM). This makes it possible to obtain channel state information for each subcarrier. In order to implement this methodology, an analysis and feature extraction in time-domain of CSI is carried out, and it is validated using different classification models trained through a series of samples that were captured in two different environments. The experiments show that the methodology presented in this manuscript obtains an average accuracy above 90%.


Assuntos
Extremidade Superior , Humanos
2.
Sensors (Basel) ; 19(10)2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31137745

RESUMO

The Canary Islands are a well known tourist destination with generally stable and clement weather conditions. However, occasionally extreme weather conditions occur, which although very unusual, may cause severe damage to the local economy. The ViMetRi-MAC EU funded project has among its goals, managing climate-change-associated risks. The Spanish National Meteorology Agency (AEMET) has a network of weather stations across the eight Canary Islands. Using data from those stations, we propose a novel methodology for the prediction of maximum wind speed in order to trigger an early alert for extreme weather conditions. The methodology proposed has the added value of using an innovative kind of machine learning that is based on the data stream mining paradigm. This type of machine learning system relies on two important features: models are learned incrementally and adaptively. That means the learner tunes the models gradually and endlessly as new observations are received and also modifies it when there is concept drift (statistical instability), in the modeled phenomenon. The results presented seem to prove that this data stream mining approach is a good fit for this kind of problem, clearly improving the results obtained with the accumulative non-adaptive version of the methodology.

3.
Sensors (Basel) ; 18(4)2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29601525

RESUMO

Indoor localization estimation has become an attractive research topic due to growing interest in location-aware services. Many research works have proposed solving this problem by using wireless communication systems based on radiofrequency. Nevertheless, those approaches usually deliver an accuracy of up to two metres, since they are hindered by multipath propagation. On the other hand, in the last few years, the increasing use of light-emitting diodes in illumination systems has provided the emergence of Visible Light Communication technologies, in which data communication is performed by transmitting through the visible band of the electromagnetic spectrum. This brings a brand new approach to high accuracy indoor positioning because this kind of network is not affected by electromagnetic interferences and the received optical power is more stable than radio signals. Our research focus on to propose a fingerprinting indoor positioning estimation system based on neural networks to predict the device position in a 3D environment. Neural networks are an effective classification and predictive method. The localization system is built using a dataset of received signal strength coming from a grid of different points. From the these values, the position in Cartesian coordinates ( x , y , z ) is estimated. The use of three neural networks is proposed in this work, where each network is responsible for estimating the position by each axis. Experimental results indicate that the proposed system leads to substantial improvements to accuracy over the widely-used traditional fingerprinting methods, yielding an accuracy above 99% and an average error distance of 0.4 mm.

4.
Sensors (Basel) ; 16(2): 216, 2016 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-26861352

RESUMO

In the last few years, the increasing use of LEDs in illumination systems has been conducted due to the emergence of Visible Light Communication (VLC) technologies, in which data communication is performed by transmitting through the visible band of the electromagnetic spectrum. In 2011, the Institute of Electrical and Electronics Engineers (IEEE) published the IEEE 802.15.7 standard for Wireless Personal Area Networks based on VLC. Due to limitations in the coverage of the transmitted signal, wireless networks can suffer from the hidden node problems, when there are nodes in the network whose transmissions are not detected by other nodes. This problem can cause an important degradation in communications when they are made by means of the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) access control method, which is used in IEEE 802.15.7 This research work evaluates the effects of the hidden node problem in the performance of the IEEE 802.15.7 standard We implement a simulator and analyze VLC performance in terms of parameters like end-to-end goodput and message loss rate. As part of this research work, a solution to the hidden node problem is proposed, based on the use of idle patterns defined in the standard. Idle patterns are sent by the network coordinator node to communicate to the other nodes that there is an ongoing transmission. The validity of the proposed solution is demonstrated with simulation results.


Assuntos
Técnicas Biossensoriais/instrumentação , Redes de Comunicação de Computadores , Tecnologia sem Fio , Simulação por Computador , Humanos , Luz , Sensação/fisiologia , Software
5.
Sensors (Basel) ; 15(6): 14809-29, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26110413

RESUMO

Indoor position estimation has become an attractive research topic due to growing interest in location-aware services. Nevertheless, satisfying solutions have not been found with the considerations of both accuracy and system complexity. From the perspective of lightweight mobile devices, they are extremely important characteristics, because both the processor power and energy availability are limited. Hence, an indoor localization system with high computational complexity can cause complete battery drain within a few hours. In our research, we use a data mining technique named boosting to develop a localization system based on multiple weighted decision trees to predict the device location, since it has high accuracy and low computational complexity. The localization system is built using a dataset from sensor fusion, which combines the strength of radio signals from different wireless local area network access points and device orientation information from a digital compass built-in mobile device, so that extra sensors are unnecessary. Experimental results indicate that the proposed system leads to substantial improvements on computational complexity over the widely-used traditional fingerprinting methods, and it has a better accuracy than they have.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...