Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36146321

RESUMO

A fingerprint sensor interoperability problem, or a cross-sensor matching problem, occurs when one type of sensor is used for enrolment and a different type for matching. Fingerprints captured for the same person using various sensor technologies have various types of noises and artifacts. This problem motivated us to develop an algorithm that can enhance fingerprints captured using different types of sensors and touch technologies. Inspired by the success of deep learning in various computer vision tasks, we formulate this problem as an image-to-image transformation designed using a deep encoder-decoder model. It is trained using two learning frameworks, i.e., conventional learning and adversarial learning based on a conditional Generative Adversarial Network (cGAN) framework. Since different types of edges form the ridge patterns in fingerprints, we employed edge loss to train the model for effective fingerprint enhancement. The designed method was evaluated on fingerprints from two benchmark cross-sensor fingerprint datasets, i.e., MOLF and FingerPass. To assess the quality of enhanced fingerprints, we employed two standard metrics commonly used: NBIS Fingerprint Image Quality (NFIQ) and Structural Similarity Index Metric (SSIM). In addition, we proposed a metric named Fingerprint Quality Enhancement Index (FQEI) for comprehensive evaluation of fingerprint enhancement algorithms. Effective fingerprint quality enhancement results were achieved regardless of the sensor type used, where this issue was not investigated in the related literature before. The results indicate that the proposed method outperforms the state-of-the-art methods.


Assuntos
Algoritmos , Artefatos , Humanos , Processamento de Imagem Assistida por Computador/métodos
3.
Sensors (Basel) ; 21(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073988

RESUMO

The fingerprint is one of the leading biometric modalities that is used worldwide for authenticating the identity of persons. Over time, a lot of research has been conducted to develop automatic fingerprint verification techniques. However, due to different authentication needs, the use of different sensors and the fingerprint verification systems encounter cross-sensor matching or sensor interoperability challenges, where different sensors are used for the enrollment and query phases. The challenge is to develop an efficient, robust and automatic system for cross-sensor matching. This paper proposes a new cross-matching system (SiameseFinger) using the Siamese network that takes the features extracted using the Gabor-HoG descriptor. The proposed Siamese network is trained using adversarial learning. The SiameseFinger was evaluated on two benchmark public datasets FingerPass and MOLF. The results of the experiments presented in this paper indicate that SiameseFinger achieves a comparable performance with that of the state-of-the-art methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...