Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 20(9): 1499-1507, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34158340

RESUMO

Since 2011, with the approval of crizotinib and subsequent approval of four additional targeted therapies, anaplastic lymphoma kinase (ALK) inhibitors have become important treatments for a subset of patients with lung cancer. Each generation of ALK inhibitor showed improvements in terms of central nervous system (CNS) penetration and potency against wild-type (WT) ALK, yet a key continued limitation is their susceptibility to resistance from ALK active-site mutations. The solvent front mutation (G1202R) and gatekeeper mutation (L1196M) are major resistance mechanisms to the first two generations of inhibitors while patients treated with the third-generation ALK inhibitor lorlatinib often experience progressive disease with multiple mutations on the same allele (mutations in cis, compound mutations). TPX-0131 is a compact macrocyclic molecule designed to fit within the ATP-binding boundary to inhibit ALK fusion proteins. In cellular assays, TPX-0131 was more potent than all five approved ALK inhibitors against WT ALK and many types of ALK resistance mutations, e.g., G1202R, L1196M, and compound mutations. In biochemical assays, TPX-0131 potently inhibited (IC50 <10 nmol/L) WT ALK and 26 ALK mutants (single and compound mutations). TPX-0131, but not lorlatinib, caused complete tumor regression in ALK (G1202R) and ALK compound mutation-dependent xenograft models. Following repeat oral administration of TPX-0131 to rats, brain levels of TPX-0131 were approximately 66% of those observed in plasma. Taken together, preclinical studies show that TPX-0131 is a CNS-penetrant, next-generation ALK inhibitor that has potency against WT ALK and a spectrum of acquired resistance mutations, especially the G1202R solvent front mutation and compound mutations, for which there are currently no effective therapies.


Assuntos
Quinase do Linfoma Anaplásico , Antineoplásicos , Transformação Celular Neoplásica , Resistencia a Medicamentos Antineoplásicos , Compostos Macrocíclicos , Mutação , Inibidores de Proteínas Quinases , Animais , Feminino , Humanos , Camundongos , Quinase do Linfoma Anaplásico/antagonistas & inibidores , Quinase do Linfoma Anaplásico/genética , Quinase do Linfoma Anaplásico/metabolismo , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Apoptose , Linfócitos B/efeitos dos fármacos , Proliferação de Células , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacocinética , Compostos Macrocíclicos/farmacologia , Camundongos Nus , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Ratos Sprague-Dawley , Distribuição Tecidual , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Bioorg Med Chem Lett ; 28(8): 1303-1308, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29571572

RESUMO

To overcome the chemical and metabolic stability issues of l-cystine dimethyl ester (CDME) and l-cystine methyl ester (CME), a series of l-cystine diamides with or without Nα-methylation was designed, synthesized, and evaluated for their inhibitory activity of l-cystine crystallization. l-Cystine diamides 2a-i without Nα-methylation were found to be potent inhibitors of l-cystine crystallization while Nα-methylation of l-cystine diamides resulted in derivatives 3b-i devoid of any inhibitory activity of l-cystine crystallization. Computational modeling indicates that Nα-methylation leads to significant decrease in binding of the l-cystine diamides to l-cystine crystal surface. Among the l-cystine diamides 2a-i, l-cystine bismorpholide (CDMOR, LH707, 2g) and l-cystine bis(N'-methylpiperazide) (CDNMP, LH708, 2h) are the most potent inhibitors of l-cystine crystallization.


Assuntos
Amidas/química , Cistina/análogos & derivados , Cistina/química , Amidas/síntese química , Cristalização , Cistina/síntese química , Cistinúria/complicações , Cálculos Renais/etiologia , Cálculos Renais/prevenção & controle , Modelos Moleculares
3.
J Med Chem ; 59(15): 7293-8, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27409142

RESUMO

l-Cystine bismorpholide (1a) and l-cystine bis(N'-methylpiperazide) (1b) were seven and twenty-four times more effective than l-cystine dimethyl ester (CDME) in increasing the metastable supersaturation range of l-cystine, respectively, effectively inhibiting l-cystine crystallization. This behavior can be attributed to inhibition of crystal growth at microscopic length scale, as revealed by atomic force microscopy. Both 1a and 1b are more stable than CDME, and 1b was effective in vivo in a knockout mouse model of cystinuria.


Assuntos
Cistina/uso terapêutico , Cistinúria/tratamento farmacológico , Diamida/uso terapêutico , Administração Oral , Sistemas de Transporte de Aminoácidos Básicos/deficiência , Sistemas de Transporte de Aminoácidos Neutros/deficiência , Animais , Cistina/administração & dosagem , Cistina/química , Cistinúria/genética , Diamida/administração & dosagem , Diamida/química , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Knockout , Modelos Moleculares , Estrutura Molecular
4.
Chem Biol Drug Des ; 86(4): 837-48, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25777622

RESUMO

To develop PSA peptide substrates with improved specificity and plasma stability from the known substrate sequence glutaryl-Hyp-Ala-Ser-Chg-Gln, systematic replacements of the N-terminal segment with D-retro-inverso-peptides were performed with the incorporation of 7-amino-4-methylcoumarin (7-AMC) after Gln for convenient fluorometric determination and ranking of the PSA substrate activity. The D-retro-inverso-peptide conjugates with P2-P5 D-amino acid substitutions were moderate but poorer PSA substrates as compared to the original peptide, suggesting that inversion of the amide bonds and/or incorporation of the additional atom as in the urea linker adversely affected PSA binding. However, P5 substitution of Hyp with Ser showed significant improvements in PSA cleavage rate; the resulting AMC conjugate, glutaryl-Ser-Ala-Ser-Chg-Gln-AMC (11), exhibited the fastest PSA cleavage rate of 351 pmol/min/100 nmol PSA. In addition, GABA←mGly-Ala-Ser-Chg-Gln-AMC (conjugate 6) was the second best PSA substrate and released 7-AMC at a rate of 225 pmol/min/100 nmol PSA as compared to 171 pmol/min/100 nmol PSA for the control conjugate glutaryl-Hyp-Ala-Ser-Chg-Gln-AMC. Incubations of selected AMC conjugates with mouse and human plasma revealed that GABA←D-Ser-ψ[NH-CO-NH]-Ala-Ser-Chg-Gln-AMC (5) and GABA←mGly-Ala-Ser-Chg-Gln-AMC (6) were most stable to non-PSA-mediated proteolysis. Our results suggest that the PSA specificity of glutaryl-Hyp-Ala-Ser-Chg-Gln is improved with Ser and mGly substitutions of Hyp at the P5.


Assuntos
Peptídeos/química , Peptídeos/metabolismo , Antígeno Prostático Específico/metabolismo , Sequência de Aminoácidos , Animais , Ensaios Enzimáticos , Humanos , Masculino , Camundongos , Peptídeos/sangue , Antígeno Prostático Específico/sangue , Proteólise , Especificidade por Substrato
5.
Med Res Rev ; 35(3): 554-85, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25529338

RESUMO

Due to the propensity of relapse and resistance with prolonged androgen deprivation therapy (ADT), there is a growing interest in developing non-hormonal therapeutic approaches as alternative treatment modalities for hormone refractory prostate cancer (HRPC). Although the standard treatment for HRPC consists of a combination of ADT with taxanes and anthracyclines, the clinical use of chemotherapeutics is limited by systemic toxicity stemming from nondiscriminatory drug exposure to normal tissues. In order to improve the tumor selectivity of chemotherapeutics, various targeted prodrug approaches have been explored. Antibody-directed enzyme prodrug therapy (ADEPT) and gene-directed enzyme prodrug therapy (GDEPT) strategies leverage tumor-specific antigens and transcription factors for the specific delivery of cytotoxic anticancer agents using various prodrug-activating enzymes. In prostate cancer, overexpression of tumor-specific proteases such as prostate-specific antigen (PSA) and prostate-specific membrane antigen (PSMA) is being exploited for selective activation of anticancer prodrugs designed to be activated through proteolysis by these prostate cancer-specific enzymes. PSMA- and PSA-activated prodrugs typically comprise an engineered high-specificity protease peptide substrate coupled to a potent cytotoxic agent via a linker for rapid release of cytotoxic species in the vicinity of prostate cancer cells following proteolytic cleavage. Over the past two decades, various such prodrugs have been developed and they were effective at inhibiting prostate tumor growth in rodent models; several of these prodrug approaches have been advanced to clinical trials and may be developed into effective therapies for HRPC.


Assuntos
Tratamento Farmacológico/métodos , Pró-Fármacos/química , Neoplasias da Próstata/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Ensaios Clínicos como Assunto , Doxorrubicina/química , Humanos , Masculino , Óxido Nítrico/química , Paclitaxel/química , Antígeno Prostático Específico/metabolismo , Recidiva , Tapsigargina/química , Vimblastina/química
6.
Chem Res Toxicol ; 25(7): 1412-22, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22765480

RESUMO

1-{4-[(4-Phenyl-5-trifluoromethyl-2-thienyl)methoxy]benzyl}azetidine-3-carboxylic acid (MRL-A) is a potent sphingosine-1-phosphate-1 receptor agonist, with potential application as an immunosuppressant in organ transplantation or for the treatment of autoimmune diseases. When administered orally to rats, radiolabeled MRL-A was found to undergo metabolism to several reactive intermediates, and in this study, we have investigated its potential for protein modification in vivo and in vitro. MRL-A irreversibly modified liver and kidney proteins in vivo, in a dose- and time-dependent manner. The binding was found to occur selectively to microsomal and mitochondrial subcellular fractions. Following a nonspecific proteolytic digestion of liver and kidney proteins, a single major amino acid adduct was observed. This adduct was characterized with LC/MS/UV and NMR spectroscopy and was found to be the product of an unprecedented metabolic activation of the azetidine moiety leading to the formation of a ring-opened α,ß-unsaturated imine conjugated to the ε-amino group of a lysine residue. The formation of this adduct was not inhibited when rats were pretreated with 1-aminobenzotriazole, indicating that P450 enzymes were not involved in the metabolic activation of MRL-A. Rather, our findings suggested that MRL-A underwent bioactivation via a ß-oxidation pathway. Several other minor adducts were identified from protein hydrolysates and included lysine, serine, and cysteine conjugates of MRL-A. These minor adducts were also detected in microsomal incubations fortified with the cofactors for acyl-CoA synthesis and in hepatocytes. Trypsin digestion of crude liver homogenates from rats treated with radiolabeled MRL-A led to the identification of a single radioactive peptide. Its sequence, determined by LC/MS analysis, revealed that the target of the major reactive species of MRL-A in vivo is Lys676 of long chain acyl-CoA synthetase-1 (ACSL1). This lysine residue has been found to be critical for ACSL1 activity, and its modification has the potential to lead to biological consequences such as cardiac hypertrophy or thermogenesis dysregulation.


Assuntos
Azetidinas/metabolismo , Proteínas/metabolismo , Receptores de Lisoesfingolipídeo/agonistas , Tiofenos/metabolismo , Administração Oral , Animais , Azetidinas/toxicidade , Biotransformação , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Marcação por Isótopo , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Espectrometria de Massas , Microssomos Hepáticos/metabolismo , Peptídeos/análise , Proteínas/química , Ratos , Receptores de Lisoesfingolipídeo/metabolismo , Tiofenos/toxicidade
7.
Beilstein J Org Chem ; 7: 1030-5, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21915204

RESUMO

Aminoacyl p-nitroaniline (aminoacyl-pNA) and aminoacyl 7-amino-4-methylcoumarin (aminoacyl-AMC) are important synthons for the synthesis of chromogenic/fluorogenic protease substrates. A new efficient method was developed to synthesize aminoacyl-pNA and aminoacyl-AMC derivatives in excellent yields starting from either amino acids or their corresponding commercially available N-hydroxysuccinimide esters. The method involved the in situ formation of selenocarboxylate intermediate of protected amino acids and the subsequent non-nucleophilic amidation with an azide. Common protecting groups used in amino acid/peptide chemistry were all well-tolerated. The method was also successfully applied to the synthesis of a dipeptide conjugate, indicating that the methodology is applicable to the synthesis of chromogenic substrates containing short peptides. The method has general applicability to the synthesis of chromogenic and fluorogenic peptide substrates and represents a convenient and high-yield synthesis of N(α)-protected-aminoacyl-pNAs/AMCs, providing easy access to these important synthons for the construction of chromogenic/fluorogenic protease substrates through fragment condensation or stepwise elongation.

8.
Drug Metab Dispos ; 36(8): 1659-69, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18505789

RESUMO

The disposition and metabolism of paraherquamide (PHQ), a potent and broad-spectrum anthelminthic, were examined in sheep, dogs, and gerbils. The metabolism of PHQ in these species was extensive and marked by significant species differences both in vitro and in vivo. In sheep and gerbils, PHQ metabolism occurs mainly at the pyrrolidine moiety, generating several metabolites that, for the most part, retained nematodicidal activity in vitro. In dogs, the dioxepene group was also extensively metabolized, ultimately resulting in formation of a catechol and loss of pharmacological activity. After oral administration of [3H]PHQ to intact sheep, gerbils, and dogs, the majority of the administered radioactivity was recovered in feces. Intact PHQ accounted for 0% (dogs) to approximately 30% (sheep and gerbils) of drug-related material in feces. A detailed investigation of the composition of the intestinal content of sheep indicated that a significant amount of the dose was still present in the rumen 24 h after dose and that PHQ underwent significant dehydration in the cecum. The oral pharmacokinetic parameters of PHQ in sheep and dogs suggest that its absorption is rapid in both species but that its apparent elimination rate is significantly higher in the dog (t(1/2) approximately 1.5 h) than it is in sheep (t(1/2) approximately 8.5 h). The short elimination half-life and the absence of PHQ or other active components in the dog gastrointestinal tract provide a potential explanation of the lack of efficacy of PHQ in this species.


Assuntos
Indolizinas/farmacocinética , Compostos de Espiro/farmacocinética , Administração Oral , Animais , Cães , Fezes/química , Gerbillinae , Meia-Vida , Indolizinas/administração & dosagem , Ovinos , Compostos de Espiro/administração & dosagem , Trítio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...