Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(9): e29909, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707469

RESUMO

According to information from the World Health Organization, the world has experienced about 430 million cases of COVID-19, a world-wide health crisis caused by the SARS-CoV-2 virus. This outbreak, originating from China in 2019, has led to nearly 6 million deaths worldwide. As the number of confirmed infections continues to rise, the need for cutting-edge techniques that can detect SARS-CoV-2 infections early and accurately has become more critical. To address this, the Federal Drug Administration (FDA) has issued emergency use authorizations (EUAs) for a wide range of diagnostic tools. These include tests based on detecting nucleic acids and antigen-antibody reactions. The quantitative real-time reverse transcription PCR (qRT-PCR) assay stands out as the gold standard for early virus detection. However, despite its accuracy, qRT-PCR has limitations, such as complex testing protocols and a risk of false negatives, which drive the continuous improvement in nucleic acid and serological testing approaches. The emergence of highly contagious variants of the coronavirus, such as Alpha (B.1.1.7), Delta (B.1.617.2), and Omicron (B.1.1.529), has increased the need for tests that can specifically identify these mutations. This article explores both nucleic acid-based and antigen-antibody serological assays, assessing the performance of recently approved FDA tests and those documented in scientific research, especially in identifying new coronavirus strains.

2.
Pak J Biol Sci ; 26(9): 458-462, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38044695

RESUMO

<b>Background and Objective:</b> Obesity is a global health epidemic associated with various health complications. This study investigates the potential effects of ethanolic fig leaf extract and orlistat on obesity, as well as their impact on kidney and liver function in a rat model, aiming to contribute to the development of strategies for managing obesity-related health issues. <b>Materials and Methods:</b> Forty male albino rats with hypercholesterolemia were divided into four groups: Group one served as a control and received a normal diet, group two was a control group that was fed a high-fat diet, group three received a high-fat diet with a daily force-fed ration of 3 g kg<sup></sup><sup>1</sup> b.wt., of fig leaves and group four received a high-fat diet along with daily administration of orlistat at 4 mg kg<sup></sup><sup>1</sup> b.wt. Blood samples were collected from all groups at baseline and after 30 days of treatment. <b>Results:</b> Rats in the high-fat diet group showed a significant increase in body weight by 49%, while rats treated with fig leaf extract showed a significant decrease in body weight by 18% (p<0 .01) and treatment with orlistat resulted in 12% elevation in body weight. Renal function markers creatinine and urea were decreased in the group treated with fig leaves. Liver enzymes AST, ALT and ALP decreased significantly in the group treated with fig leaves and orlistat. Albumin and globulin concentrations decreased more with fig leaf extract than with orlistat. <b>Conclusion:</b> Fig leaves and orlistat reduce body weight and improve kidney and liver function in hypercholesterolemic rats.


Assuntos
Ficus , Masculino , Animais , Ratos , Orlistate , Fígado , Rim/fisiologia , Obesidade/tratamento farmacológico , Peso Corporal , Extratos Vegetais/farmacologia
3.
Biomolecules ; 13(12)2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-38136554

RESUMO

COVID-19, caused by the SARS-CoV-2 virus, manifests with a wide range of clinical symptoms that vary from mild respiratory issues to severe respiratory distress. To effectively manage and predict the outcomes of the disease, it is important to understand the molecular mechanisms underlying its severity. This study focuses on analyzing and comparing the expression patterns of microRNAs (miRNAs) in serum, urine, and nasopharyngeal samples from patients with mild, moderate, and severe COVID-19. The aim is to identify potential associations with disease progression and discover suitable markers for diagnosis and prognosis. Our findings indicate the consistent upregulation of miR-21, miR-146a, and miR-155 in urine, serum, and nasopharyngeal samples from patients with mild COVID-19. In moderate cases, there were more significant changes in miRNA expression compared to mild cases. Specifically, miR-let-7 demonstrated upregulation, while miR-146b exhibited downregulation. The most notable alterations in miRNA expression profiles were observed in severe COVID-19 cases, with a significant upregulation of miR-223. Moreover, our analysis using Receiver-operating characteristic (ROC) curves demonstrated that miR-155, miR-let-7, and miR-223 exhibited high sensitivity and specificity, suggesting their potential as biomarkers for distinguishing COVID-19 patients from healthy individuals. Overall, this comparative analysis revealed distinct patterns in miRNA expression. The overlapping expression patterns of miRNAs in urine, serum, and nasopharyngeal samples suggest their potential utility in discriminating disease status.


Assuntos
COVID-19 , MicroRNAs , Humanos , COVID-19/diagnóstico , COVID-19/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , MicroRNAs/metabolismo , Biomarcadores , Curva ROC
4.
Molecules ; 27(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36234759

RESUMO

In the present study, the anti-diabetic potential of Ocimum tenuiflorum was investigated using computational techniques for α-glucosidase, α-amylase, aldose reductase, and glycation at multiple stages. It aimed to elucidate the mechanism by which phytocompounds of O. tenuiflorum treat diabetes mellitus using concepts of druglikeness and pharmacokinetics, molecular docking simulations, molecular dynamics simulations, and binding free energy studies. Isoeugenol is a phenylpropene, propenyl-substituted guaiacol found in the essential oils of plants. During molecular docking modelling, isoeugenol was found to inhibit all the target enzymes, with a higher binding efficiency than standard drugs. Furthermore, molecular dynamic experiments revealed that isoeugenol was more stable in the binding pockets than the standard drugs used. Since our aim was to discover a single lead molecule with a higher binding efficiency and stability, isoeugenol was selected. In this context, our study stands in contrast to other computational studies that report on more than one compound, making it difficult to offer further analyses. To summarize, we recommend isoeugenol as a potential widely employed lead inhibitor of α-glucosidase, α-amylase, aldose reductase, and glycation based on the results of our in silico studies, therefore revealing a novel phytocompound for the effective treatment of hyperglycemia and diabetes mellitus.


Assuntos
Diabetes Mellitus , Óleos Voláteis , Aldeído Redutase , Eugenol/análogos & derivados , Guaiacol , Simulação de Acoplamento Molecular , Ocimum sanctum , alfa-Amilases , alfa-Glucosidases
5.
Molecules ; 27(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35335251

RESUMO

For the first time, α-glucosidase, α-amylase, aldose reductase, and glycation at multiple stages inhibitory assays were used to explore the antidiabetic potential of whole unripe jackfruit (peel with pulp, flake, and seed). Two polyphenols (phenolic acids) with strong antihyperglycaemic activity were isolated from the methanol extract of whole jackfruit flour (MJ) using activity-guided repeated fractionation on a silica gel column chromatography. The bioactive compounds isolated were identified as 3-(3,4-Dihydroxyphenyl)-2-propenoic acid (caffeic acid: CA) and 4-Hydroxy-3,5-dimethoxybenzoic acid (syringic acid: SA) after various physicochemical and spectroscopic investigations. CA (IC50: 8.0 and 26.90 µg/mL) and SA (IC50: 7.5 and 25.25 µg/mL) were identified to inhibit α-glucosidase and α-amylase in a competitive manner with low Ki values. In vitro glycation experiments further revealed that MJ and its components inhibited each stage of protein glycation as well as the generation of intermediate chemicals. Furthermore, CA (IC50: 3.10) and SA (IC50: 3.0 µg/mL) inhibited aldose reductase effectively in a non-competitive manner, respectively. The binding affinity of these substances towards the enzymes examined has been proposed by molecular docking and molecular dynamics simulation studies, which may explain their inhibitory activities. The found potential of MJ in antihyperglycaemic activity via inhibition of α-glucosidase and in antidiabetic action via inhibition of the polyol pathway and protein glycation is more likely to be related to the presence of the phenolic compounds, according to our findings.


Assuntos
Artocarpus , alfa-Glucosidases , Aldeído Redutase , Artocarpus/metabolismo , Inibidores Enzimáticos/química , Farinha , Cinética , Simulação de Acoplamento Molecular , Polifenóis/farmacologia , alfa-Amilases , alfa-Glucosidases/metabolismo
6.
Front Microbiol ; 13: 1042263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36756202

RESUMO

Probiotic microbiota plays a vital role in gastrointestinal health and possesses other beneficial attributes such as antimicrobial and antibiotic agents along with a significant role in the management of diabetes. The present study identifies the probiotic potential of Lactobacillus spp. isolated from three traditionally fermented foods namely, jalebi, medhu vada, and kallappam batters at biochemical, physiological, and molecular levels. By 16S rRNA gene amplification and sequencing, the isolates were identified. A similarity of >98% to Lacticaseibacillus rhamnosus RAMULAB13, Lactiplantibacillus plantarum RAMULAB14, Lactiplantibacillus pentosus RAMULAB15, Lacticaseibacillus paracasei RAMULAB16, Lacticaseibacillus casei RAMULAB17, Lacticaseibacillus casei RAMULAB20, and Lacticaseibacillus paracasei RAMULAB21 was suggested when searched for homology using NCBI database. Utilizing the cell-free supernatant (CS), intact cells (IC), and cell-free extract (CE) of the isolates, inhibitory potential activity against the carbohydrate hydrolyzing enzymes α-glucosidase and α-amylase was assessed. CS, CE, and IC of the isolates had a varying capability of inhibition against α-glucosidase (15.08 to 59.55%) and α-amylase (18.79 to 63.42%) enzymes. To assess the probiotic potential of seven isolates, various preliminary characteristics were examined. All the isolates exhibited substantial tolerance toward gastrointestinal conditions and also demonstrated the highest survival rate (> 99%), hydrophobicity (> 65%), aggregation (> 76%), adherence to HT-29 cells (> 84%), and chicken crop epithelial cells suggesting that the isolates had a high probiotic attribute. Additionally, the strains showed remarkable results in safety assessment assays (DNase and hemolytic), and antibacterial and antibiotic evaluations. The study concludes that the lactic acid bacteria (LAB) characterized possesses outstanding probiotic properties and has antidiabetic effects. In order to obtain various health advantages, LAB can be utilized as probiotic supplements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...