Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 766: 142668, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33077225

RESUMO

Microbial inocula from marine origins are less explored for CO2 reduction in microbial electrosynthesis (MES) system, although effective CO2-fixing communities in marine environments are well-documented. We explored natural saline habitats, mainly salt marsh (SM) and mangrove (M) sediments, as potential inoculum sources for enriching salt-tolerant CO2 reducing community using two enrichment strategies: H2:CO2 (80:20) enrichment in serum vials and enrichment in cathode chamber of MES reactors operated at -1.0 V vs. Ag/AgCl. Porous ceramic hollow tube wrapped with carbon cloth was used as cathode and for direct CO2 delivery to CO2 reducing communities growing on the cathode surface. Methanogenesis was dominant in both the M- and SM-seeded MES and the methanogenic Archaea Methanococcus was the most dominant genus. Methane production was slightly higher in the SM-seeded MES (4.9 ± 1.7 mmol) compared to the M-seeded MES (3.8 ± 1.1 mmol). In contrast, acetate production was almost two times higher in the M-seeded MES (3.1 ± 0.9 mmol) than SM-seeded MES (1.5 ± 1.3 mmol). The high relative abundance of the genus Acetobacterium in the M-seeded serum vials correlates with the high acetate production obtained. The different enrichment strategies affected the community composition, though the communities in MES reactors and serum vials were performing similar functions (methanogenesis and acetogenesis). Despite similar operating conditions, the microbial community composition of M-seeded serum vials and MES reactors differed from the SM-seeded serum vials and MES reactors, supporting the importance of inoculum source in the evolution of CO2-reducing microbial communities.


Assuntos
Dióxido de Carbono , Carbono , Cerâmica , Eletrodos , Porosidade
2.
Front Microbiol ; 10: 2563, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31787955

RESUMO

Homoacetogens are efficient CO2 fixing bacteria using H2 as electron donor to produce acetate. These organisms can be enriched at the biocathode of microbial electrosynthesis (MES) for electricity-driven CO2 reduction to acetate. Studies exploring homoacetogens in MES are mainly conducted using pure or mix-culture anaerobic inocula from samples with standard environmental conditions. Extreme marine environments host unique microbial communities including homoacetogens that may have unique capabilities due to their adaptation to harsh environmental conditions. Anaerobic deep-sea brine pools are hypersaline and metalliferous environments and homoacetogens can be expected to live in these environments due to their remarkable metabolic flexibility and energy-efficient biosynthesis. However, brine pools have never been explored as inocula for the enrichment of homacetogens in MES. Here we used the saline water from a Red Sea brine pool as inoculum for the enrichment of halophilic homoacetogens at the biocathode (-1 V vs. Ag/AgCl) of MES. Volatile fatty acids, especially acetate, along with hydrogen gas were produced in MES systems operated at 25 and 10% salinity. Acetate concentration increased when MES was operated at a lower salinity ∼3.5%, representing typical seawater salinity. Amplicon sequencing and genome-centric metagenomics of matured cathodic biofilm showed dominance of the genus Marinobacter and phylum Firmicutes at all tested salinities. Seventeen high-quality draft metagenome-assembled genomes (MAGs) were extracted from the biocathode samples. The recovered MAGs accounted for 87 ± 4% of the quality filtered sequence reads. Genome analysis of the MAGs suggested CO2 fixation via Wood-Ljundahl pathway by members of the phylum Firmicutes and the fixed CO2 was possibly utilized by Marinobacter sp. for growth by consuming O2 escaping from the anode to the cathode for respiration. The enrichment of Marinobacter sp. with homoacetogens was only possible because of the specific cathodic environment in MES. These findings suggest that in organic carbon-limited saline environments, Marinobacter spp. can live in consortia with CO2 fixing bacteria such as homoacetogens, which can provide them with fixed carbon as a source of carbon and energy.

3.
Adv Mater ; 30(26): e1707072, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29707854

RESUMO

Dual-function electrocatalytic and macroporous hollow-fiber cathodes are recently proposed as promising advanced material for maximizing the conversion of waste streams such as wastewater and waste CO2 to valuable resources (e.g., clean freshwater, energy, value-added chemicals) in microbial electrochemical systems. The first part of this progress report reviews recent developments in this type of cathode architecture for the simultaneous recovery of clean freshwater and energy from wastewater. Critical insights are provided on suitable materials for fabricating these cathodes, as well as addressing some challenges in the fabrication process with proposed strategies to overcome them. The second and complementary part of the progress report highlights how the unique features of this cathode architecture can solve one of the intrinsic bottlenecks (gas-liquid mass transfer limitation) in the application of microbial electrochemical systems for CO2 reduction to value-added products. Strategies to further improve the availability of CO2 to microbial catalysts on the cathode are proposed. The importance of understanding microbe-cathode interactions, as well as electron transfer mechanisms at the cathode-cell and cell-cell interface to better design dual-function macroporous hollow-fiber cathodes, is critically discussed with insights on how the choice of material is important in facilitating direct electron transfer versus mediated electron transfer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...