Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 78(11): 4783-4792, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35900363

RESUMO

BACKGROUND: Host genetic resistance is a promising strategy for the management of Diaphorina citri Kuwayama (Hemiptera: Psyllidae), and consequently Huanglongbing (HLB). To date, no study has investigated the resistance to D. citri in the clonal and vegetatively propagated plants of the Microcitrus, Eremocitrus, and Atalantia genera. This study assesses Near and True Citrus genotype antixenosis and antibiosis against D. citri, with trichome density and volatile emission as possible mechanisms of resistance. RESULTS: All genotypes were oviposited by D. citri, however, 8 of 14 genotypes were less oviposited than Citrus × sinensis 'Valencia' (susceptible control). Diaphorina citri nymphs had lower nymphal viability in E. glauca (31%) and M. warburgiana (58%) than that in Citrus × sinensis (77%). The behavioral assay showed that 30% of D. citri nymphs in the last instars evaded E. glauca shoots, whereas no nymphs evaded Citrus × sinensis shoots. A higher trichome density was observed in E. glauca shoots compared to the other genotypes. Chemical analysis revealed differences in the volatile profiles of E. glauca and Citrus × sinensis. CONCLUSION: Eremocitrus glauca and M. warburgiana genotypes were more resistant to D. citri than Citrus × sinensis. Higher trichome density in the shoots may negatively influence the development of D. citri nymphs. Eremocitrus glauca volatiles may also be involved in their resistance to D. citri. © 2022 Society of Chemical Industry.


Assuntos
Citrus sinensis , Citrus , Hemípteros , Animais , Antibiose , Hemípteros/genética , Ninfa/genética
2.
Front Plant Sci ; 13: 835282, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371165

RESUMO

To recover transgenic citrus plants in the most efficient manner, the use of selection marker genes is essential. In this work, it was shown that the mutated forms of the acetolactate synthase (ALS) gene in combination with the herbicide selection agent imazapyr (IMZ) added to the selection medium may be used to achieve this goal. This approach enables the development of cisgenic regenerants, namely, plants without the incorporation of those bacterial genes currently employed for transgenic selection, and additionally it allows the generation of edited, non-transgenic plants with altered endogenous ALS genes leading to IMZ resistance. In this work, the citrus mutants, in which ALS has been converted into IMZ-resistant forms using a base editor system, were recovered after cocultivation of the explants with Agrobacterium tumefaciens carrying a cytidine deaminase fused to nSpCas9 in the T-DNA and selecting regenerants in the culture medium supplemented with IMZ. Analysis of transgene-free plants indicated that the transient expression of the T-DNA genes was sufficient to induce ALS mutations and thus generate IMZ-resistant shoots at 11.7% frequency. To our knowledge, this is the first report of T-DNA-free edited citrus plants. Although further optimization is required to increase edition efficiency, this methodology will allow generating new citrus varieties with improved organoleptic/agronomic features without the need to use foreign genes.

3.
Antioxidants (Basel) ; 11(3)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35326197

RESUMO

Numerous studies have revealed the remarkable health-promoting activities of citrus fruits, all of them related to the accumulation of bioactive compounds, including vitamins and phytonutrients. Anthocyanins are characteristic flavonoids present in blood orange, which require low-temperature for their production. Storage at low-temperature of blood oranges has been proven to be a feasible postharvest strategy to increase anthocyanins in those countries with warm climates. To our knowledge, no studies comparing the effect of postharvest storage effect on phenylpropanoid accumulation in cultivars with and without anthocyanins production have been published. We have investigated the effect of postharvest cold storage in flavonoid accumulation in juice from Citrus sinensis L. Osbeck in two different oranges: Pera, a blond cultivar, and Moro, a blood one. Our findings indicate a different response to low-temperature of fruit from both cultivars at biochemical and molecular levels. Little changes were observed in Pera before and after storage, while a higher production of phenylpropanoids (3.3-fold higher) and flavonoids (1.4-fold higher), including a rise in anthocyanins from 1.3 ± 0.7 mg/L to 60.0 ± 9.4 mg/L was observed in Moro concurrent with an upregulation of the biosynthetic genes across the biosynthetic pathway. We show that postharvest storage enhances not only anthocyanins but also other flavonoids accumulation in blood oranges (but not in blond ones), further stimulating the interest in blood orange types in antioxidant-rich diets.

4.
Phytopathology ; 112(1): 11-25, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34645319

RESUMO

Huanglongbing (HLB), formerly known as greening, is a bacterial disease restricted to some Asian and African regions until two decades ago. Nowadays, associated bacteria and their vectors have spread to almost all citrus-producing regions, and it is currently considered the most devastating citrus disease. HLB management can be approached in terms of prevention, limiting or avoiding pathogen and associated vectors to reach an area, or in terms of control, trying to reduce the impact of the disease by adopting different cultural strategies depending on infestation/infection levels. In both cases, control of psyllid populations is currently the best way to stop HLB spread. Best cultural actions (CHMAs, TPS system) to attain this goal and, thus, able to limit HLB spread, and ongoing research in this regard is summarized in this review.


Assuntos
Citrus , Hemípteros , Rhizobiaceae , Animais , Doenças das Plantas/prevenção & controle
5.
Curr Opin Biotechnol ; 70: 196-203, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34198205

RESUMO

Huanglongbing (HLB) disease is threatening the sustainability of citriculture in affected regions because of its rapid spread and the severity of the symptoms it induces. Herein, we summarise the main research findings that can be exploited to develop HLB-resistant cultivars. A major bottleneck has been the lack of a system for the ex vivo cultivation of HLB-associated bacteria (CLs) in true plant hosts, which precludes the evaluation of target genes/metabolites in reliable plant/pathogen/vector environments. With regard to HLB vectors, several biotechnologies which have been proven in laboratory settings to be effective for insect control are presented. Finally, new genotypes that are resistant to CLs or their insect vectors are described, and the most relevant strategies for fighting HLB are highlighted.


Assuntos
Citrus , Hemípteros , Rhizobiaceae , Animais , Citrus/genética , Insetos Vetores , Doenças das Plantas/genética , Rhizobiaceae/genética
6.
Front Plant Sci ; 12: 641457, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763099

RESUMO

Huanglongbing (HLB) is a destructive disease, associated with psyllid-transmitted phloem-restricted pathogenic bacteria, which is seriously endangering citriculture worldwide. It affects all citrus species and cultivars regardless of the rootstock used, and despite intensive research in the last decades, there is no effective cure to control either the bacterial species (Candidatus Liberibacter spp.) or their insect vectors (Diaphorina citri and Trioza erytreae). Currently, the best attempts to manage HLB are based on three approaches: (i) reducing the psyllid population by intensive insecticide treatments; (ii) reducing inoculum sources by removing infected trees, and (iii) using nursery-certified healthy plants for replanting. The economic losses caused by HLB (decreased fruit quality, reduced yield, and tree destruction) and the huge environmental costs of disease management seriously threaten the sustainability of the citrus industry in affected regions. Here, we have generated genetically modified sweet orange lines to constitutively emit (E)-ß-caryophyllene, a sesquiterpene repellent to D. citri, the main HLB psyllid vector. We demonstrate that this alteration in volatile emission affects behavioral responses of the psyllid in olfactometric and no-choice assays, making them repellent/less attractant to the HLB vector, opening a new alternative for possible HLB control in the field.

7.
Food Chem ; 342: 128334, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33077281

RESUMO

Anthocyanins are pigments present in blood oranges which can be enriched by post-harvest cold storage. Additionally, citrus fruits contain appreciable levels of other flavonoids, whose content increases under post-harvest heat treatments. Here, we investigated the effects of curing (37 °C for 3 days) and storage at low-temperature (9 °C) during 15, 30 and 45 days on accumulation of anthocyanins and other flavonoids in Moro and Sanguinelli Polidori blood oranges (Citrus sinensis L. Osbeck). Cured fruits reached up to 191.4 ± 1.4 mg/L of anthocyanins in their juice after cold storage and a 3-fold enrichment of other flavonoids such as flavones and flavanones, compared to 85.7 ± 3.3 mg/L anthocyanins from fruits with cold storage alone. Concomitantly, qPCR analysis showed that curing enhanced upregulation of the main structural and transcription factor genes regulating the flavonoid pathway. GC-MS analysis showed that no unpleasant compounds were generated in the cured plus cold-stored juice volatilome.


Assuntos
Antocianinas/biossíntese , Citrus sinensis/metabolismo , Temperatura Baixa , Manipulação de Alimentos , Armazenamento de Alimentos , Frutas/metabolismo
8.
BMC Plant Biol ; 19(1): 465, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31684878

RESUMO

BACKGROUND: Fruit coloration is one of the main quality parameters of Citrus fruit primarily determined by genetic factors. The fruit of ordinary sweet orange (Citrus sinensis) displays a pleasant orange tint due to accumulation of carotenoids, representing ß,ß-xanthophylls more than 80% of the total content. 'Pinalate' is a spontaneous bud mutant, or somatic mutation, derived from sweet orange 'Navelate', characterized by yellow fruits due to elevated proportions of upstream carotenes and reduced ß,ß-xanthophylls, which suggests a biosynthetic blockage at early steps of the carotenoid pathway. RESULTS: To identify the molecular basis of 'Pinalate' yellow fruit, a complete characterization of carotenoids profile together with transcriptional changes in carotenoid biosynthetic genes were performed in mutant and parental fruits during development and ripening. 'Pinalate' fruit showed a distinctive carotenoid profile at all ripening stages, accumulating phytoene, phytofluene and unusual proportions of 9,15,9'-tri-cis- and 9,9'-di-cis-ζ-carotene, while content of downstream carotenoids was significantly decreased. Transcript levels for most of the carotenoid biosynthetic genes showed no alterations in 'Pinalate'; however, the steady-state level mRNA of ζ-carotene isomerase (Z-ISO), which catalyses the conversion of 9,15,9'-tri-cis- to 9,9'-di-cis-ζ-carotene, was significantly reduced both in 'Pinalate' fruit and leaf tissues. Isolation of the 'Pinalate' Z-ISO genomic sequence identified a new allele with a single nucleotide insertion at the second exon, which generates an alternative splicing site that alters Z-ISO transcripts encoding non-functional enzyme. Moreover, functional assays of citrus Z-ISO in E.coli showed that light is able to enhance a non-enzymatic isomerization of tri-cis to di-cis-ζ-carotene, which is in agreement with the partial rescue of mutant phenotype when 'Pinalate' fruits are highly exposed to light during ripening. CONCLUSION: A single nucleotide insertion has been identified in 'Pinalate' Z-ISO gene that results in truncated proteins. This causes a bottleneck in the carotenoid pathway with an unbalanced content of carotenes upstream to ß,ß-xanthophylls in fruit tissues. In chloroplastic tissues, the effects of Z-ISO alteration are mainly manifested as a reduction in total carotenoid content. Taken together, our results indicate that the spontaneous single nucleotide insertion in Z-ISO is the molecular basis of the yellow pigmentation in 'Pinalate' sweet orange and points this isomerase as an essential activity for carotenogenesis in citrus fruits.


Assuntos
Citrus sinensis/fisiologia , Frutas/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Isomerases/genética , Proteínas de Plantas/genética , Alelos , Sequência de Aminoácidos , Citrus sinensis/genética , Cor , Frutas/genética , Isomerases/química , Isomerases/metabolismo , Pigmentação/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência
9.
Sci Rep ; 9(1): 2070, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30765801

RESUMO

Novel, suitable and sustainable alternative control tactics that have the potential to reduce migration of Diaphorina citri into commercial citrus orchards are essential to improve management of huanglongbing (HLB). In this study, the effect of orange jasmine (Murraya paniculata) as a border trap crop on psyllid settlement and dispersal was assessed in citrus orchards. Furthermore, volatile emission profiles and relative attractiveness of both orange jasmine and sweet orange (Citrus × aurantium L., syn. Citrus sinensis (L.) Osbeck) nursery flushes to D. citri were investigated. In newly established citrus orchards, the trap crop reduced the capture of psyllids in yellow sticky traps and the number of psyllids that settled on citrus trees compared to fallow mowed grass fields by 40% and 83%, respectively. Psyllids were attracted and killed by thiamethoxam-treated orange jasmine suggesting that the trap crop could act as a 'sink' for D. citri. Additionally, the presence of the trap crop reduced HLB incidence by 43%. Olfactometer experiments showed that orange jasmine plays an attractive role on psyllid behavior and that this attractiveness may be associated with differences in the volatile profiles emitted by orange jasmine in comparison with sweet orange. Results indicated that insecticide-treated M. paniculata may act as a trap crop to attract and kill D. citri before they settled on the edges of citrus orchards, which significantly contributes to the reduction of HLB primary spread.


Assuntos
Citrus sinensis/parasitologia , Produtos Agrícolas/parasitologia , Hemípteros/efeitos dos fármacos , Inseticidas/farmacologia , Jasminum/parasitologia , Animais , Citrus/parasitologia , Murraya/parasitologia
10.
Front Plant Sci ; 8: 1481, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28883829

RESUMO

Citrus aroma and flavor, chief traits of fruit quality, are derived from their high content in essential oils of most plant tissues, including leaves, stems, flowers, and fruits. Accumulated in secretory cavities, most components of these oils are volatile terpenes. They contribute to defense against herbivores and pathogens, and perhaps also protect tissues against abiotic stress. In spite of their importance, our understanding of the physiological, biochemical, and genetic regulation of citrus terpene volatiles is still limited. The availability of the sweet orange (Citrus sinensis L. Osbeck) genome sequence allowed us to characterize for the first time the terpene synthase (TPS) family in a citrus type. CsTPS is one of the largest angiosperm TPS families characterized so far, formed by 95 loci from which just 55 encode for putative functional TPSs. All TPS angiosperm families, TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g were represented in the sweet orange genome, with 28, 18, 2, 2, and 5 putative full length genes each. Additionally, sweet orange ß-farnesene synthase, (Z)-ß-cubebene/α-copaene synthase, two ß-caryophyllene synthases, and three multiproduct enzymes yielding ß-cadinene/α-copaene, ß-elemene, and ß-cadinene/ledene/allo-aromandendrene as major products were identified, and functionally characterized via in vivo recombinant Escherichia coli assays.

11.
Food Chem ; 237: 7-14, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28764055

RESUMO

Blood oranges require low temperature for anthocyanin production. We have investigated the activation of anthocyanin biosynthesis and accumulation in the pulp of Moro blood and Pera blond oranges (Citrus sinensis L. Osbeck) stored at either 4 or 9°C after harvesting. Both temperatures stimulated anthocyanin accumulation in blood but not in blond oranges. Nonetheless, blood orange fruits stored at 9°C reached a darker purple coloration, higher anthocyanin contents and enhanced upregulation of genes from the flavonoid pathway in the pulp and juice than those kept at 4°C. Our results indicated that dihydroflavonol channeling toward anthocyanin production was boosted during the storage at 9°C compared to 4°C, providing more leucoanthocyanidins to enzymes downstream in the pathway. Finally, despite both low temperatures stimulated the expression of key transcription factors likely regulating the pathway, their expression profiles could not explain the differences observed at 9 and 4°C.


Assuntos
Antocianinas/biossíntese , Citrus sinensis/química , Temperatura Baixa , Frutas , Temperatura
12.
Sci Rep ; 7(1): 5639, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28717202

RESUMO

Production of citrus, the main fruit tree crop worldwide, is severely threatened by Huanglongbing (HLB), for which as yet a cure is not available. Spread of this bacterial disease in America and Asia is intimately connected with dispersal and feeding of the insect vector Diaphorina citri, oligophagous on rutaceous host plants. Effective control of this psyllid is an important component in successful HLB management programs. Volatiles released from the non-host guava have been shown to be repellent to the psyllid and to inhibit its response to citrus odour. By analysing VOC emission from guava we identified one volatile compound, (E)-ß-caryophyllene, which at certain doses exerts a repellent effect on D. citri. Non-host plant rejection mediated by (E)-ß-caryophyllene is demonstrated here by using Arabidopsis over-expression and knock-out lines. For the first time, results indicate that genetically engineered Arabidopsis plants with modified emission of VOCs can alter the behaviour of D. citri. This study shows that transgenic plants with an inherent ability to release (E)-ß-caryophyllene can potentially be used in new protection strategies of citrus trees against HLB.


Assuntos
Alquil e Aril Transferases/genética , Arabidopsis/genética , Hemípteros/efeitos dos fármacos , Repelentes de Insetos/química , Plantas Geneticamente Modificadas/química , Sesquiterpenos/química , Alphaproteobacteria/patogenicidade , Animais , Arabidopsis/química , Citrus/parasitologia , Hemípteros/microbiologia , Repelentes de Insetos/farmacologia , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/microbiologia , Doenças das Plantas/prevenção & controle , Sesquiterpenos Policíclicos , Psidium/química , Sesquiterpenos/farmacologia , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/farmacologia
13.
Plant Signal Behav ; 10(6): e1028704, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26023857

RESUMO

Volatile organic compounds (VOCs) are secondary metabolites acting as a language for the communication of plants with the environment. In orange fruits, the monoterpene D-limonene accumulates at very high levels in oil glands from the peel. Drastic down-regulation of D-limonene synthase gene expression in the peel of transgenic oranges harboring a D-limonene synthase transgene in antisense (AS) configuration altered the monoterpene profile in oil glands, mainly resulting in reduced accumulation of D-limonene. This led to fruit resistance against Penicillium digitatum (Pd), Xanthomonas citri subsp. citri (Xcc) and other specialized pathogens. Here, we analyze resistance to pathogens in independent AS and empty vector (EV) lines, which have low, medium or high D-limonene concentrations and show that the level of resistance is inversely related to the accumulation of D-limonene in orange peels, thus explaining the need of high D-limonene accumulation in mature oranges in nature for the efficient attraction of specialized microorganism frugivores.


Assuntos
Citrus/anatomia & histologia , Citrus/microbiologia , Cicloexenos/metabolismo , Resistência à Doença , Regulação para Baixo , Doenças das Plantas/microbiologia , Óleos de Plantas/metabolismo , Terpenos/metabolismo , Citrus/genética , DNA de Plantas/isolamento & purificação , Resistência à Doença/genética , Limoneno , Doenças das Plantas/genética , Plantas Geneticamente Modificadas , RNA Antissenso/metabolismo , Compostos Orgânicos Voláteis/análise
14.
Physiol Plant ; 154(4): 469-84, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25676857

RESUMO

The distinctive color of red grapefruits is due to lycopene, an unusual carotene in citrus. It has been observed that red 'Star Ruby' (SR) grapefruits grown inside the tree canopy develop a more intense red coloration than those exposed to higher light intensities. To investigate the effect of light on SR peel pigmentation, fruit were bagged or exposed to normal photoperiodic conditions, and changes in carotenoids, expression of carotenoid biosynthetic genes and plastid ultrastructure in the peel were analyzed. Light avoidance accelerated chlorophyll breakdown and induced carotenoid accumulation, rendering fruits with an intense coloration. Remarkably, lycopene levels in the peel of shaded fruits were 49-fold higher than in light-exposed fruit while concentrations of downstream metabolites were notably reduced, suggesting a bottleneck at the lycopene cyclization in the biosynthetic pathway. Paradoxically, this increment in carotenoids in covered fruit was not mirrored by changes in mRNA levels of carotenogenic genes, which were mostly up-regulated by light. In addition, covered fruits experienced profound changes in chromoplast differentiation, and the relative expression of genes related to chromoplast development was enhanced. Ultrastructural analysis of plastids revealed an acceleration of chloroplasts to chromoplast transition in the peel of covered fruits concomitantly with development of lycopene crystals and plastoglobuli. In this sense, an accelerated differentiation of chromoplasts may provide biosynthetic capacity and a sink for carotenoids without involving major changes in transcript levels of carotenogenic genes. Light signals seem to regulate carotenoid accumulation at the molecular and structural level by influencing both biosynthetic capacity and sink strength.


Assuntos
Carotenoides/metabolismo , Citrus paradisi , Cor , Plastídeos , Carotenoides/biossíntese , Cromatografia Líquida de Alta Pressão , Citrus paradisi/genética , Citrus paradisi/metabolismo , Genes de Plantas , RNA Mensageiro/genética
15.
Plant Physiol ; 164(1): 321-39, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24192451

RESUMO

Terpenoid volatiles are isoprene compounds that are emitted by plants to communicate with the environment. In addition to their function in repelling herbivores and attracting carnivorous predators in green tissues, the presumed primary function of terpenoid volatiles released from mature fruits is the attraction of seed-dispersing animals. Mature oranges (Citrus sinensis) primarily accumulate terpenes in peel oil glands, with d-limonene accounting for approximately 97% of the total volatile terpenes. In a previous report, we showed that down-regulation of a d-limonene synthase gene alters monoterpene levels in orange antisense (AS) fruits, leading to resistance against Penicillium digitatum infection. A global gene expression analysis of AS versus empty vector (EV) transgenic fruits revealed that the down-regulation of d-limonene up-regulated genes involved in the innate immune response. Basal levels of jasmonic acid were substantially higher in the EV compared with AS oranges. Upon fungal challenge, salicylic acid levels were triggered in EV samples, while jasmonic acid metabolism and signaling were drastically increased in AS orange peels. In nature, d-limonene levels increase in orange fruit once the seeds are fully viable. The inverse correlation between the increase in d-limonene content and the decrease in the defense response suggests that d-limonene promotes infection by microorganisms that are likely involved in facilitating access to the pulp for seed-dispersing frugivores.


Assuntos
Citrus sinensis/genética , Citrus sinensis/microbiologia , Cicloexenos/metabolismo , Frutas/microbiologia , Terpenos/metabolismo , Citrus sinensis/imunologia , Cicloexenos/farmacologia , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Regulação para Baixo , Farnesiltranstransferase/genética , Farnesiltranstransferase/metabolismo , Frutas/efeitos dos fármacos , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/fisiologia , Imunidade Inata/genética , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Limoneno , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Penicillium/patogenicidade , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Transdução de Sinais/genética , Terpenos/farmacologia
16.
Plant Biotechnol J ; 12(1): 17-27, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24034339

RESUMO

Orange is a major crop and an important source of health-promoting bioactive compounds. Increasing the levels of specific antioxidants in orange fruit through metabolic engineering could strengthen the fruit's health benefits. In this work, we have afforded enhancing the ß-carotene content of orange fruit through blocking by RNA interference the expression of an endogenous ß-carotene hydroxylase gene (Csß-CHX) that is involved in the conversion of ß-carotene into xanthophylls. Additionally, we have simultaneously overexpressed a key regulator gene of flowering transition, the FLOWERING LOCUS T from sweet orange (CsFT), in the transgenic juvenile plants, which allowed us to obtain fruit in an extremely short period of time. Silencing the Csß-CHX gene resulted in oranges with a deep yellow ('golden') phenotype and significant increases (up to 36-fold) in ß-carotene content in the pulp. The capacity of ß-carotene-enriched oranges for protection against oxidative stress in vivo was assessed using Caenorhabditis elegans as experimental animal model. Golden oranges induced a 20% higher antioxidant effect than the isogenic control. This is the first example of the successful metabolic engineering of the ß-carotene content (or the content of any other phytonutrient) in oranges and demonstrates the potential of genetic engineering for the nutritional enhancement of fruit tree crops.


Assuntos
Citrus/metabolismo , Frutas/metabolismo , Engenharia Metabólica/métodos , Plantas Geneticamente Modificadas/metabolismo , beta Caroteno/metabolismo , Antioxidantes/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo
17.
J Exp Bot ; 64(14): 4461-78, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24006419

RESUMO

Citrus is the first tree crop in terms of fruit production. The colour of Citrus fruit is one of the main quality attributes, caused by the accumulation of carotenoids and their derivative C30 apocarotenoids, mainly ß-citraurin (3-hydroxy-ß-apo-8'-carotenal), which provide an attractive orange-reddish tint to the peel of oranges and Mandarins. Though carotenoid biosynthesis and its regulation have been extensively studied in Citrus fruits, little is known about the formation of C30 apocarotenoids. The aim of this study was to the identify carotenoid cleavage enzyme(s) [CCD(s)] involved in the peel-specific C30 apocarotenoids. In silico data mining revealed a new family of five CCD4-type genes in Citrus. One gene of this family, CCD4b1, was expressed in reproductive and vegetative tissues of different Citrus species in a pattern correlating with the accumulation of C30 apocarotenoids. Moreover, developmental processes and treatments which alter Citrus fruit peel pigmentation led to changes of ß-citraurin content and CCD4b1 transcript levels. These results point to the involvement of CCD4b1 in ß-citraurin formation and indicate that the accumulation of this compound is determined by the availability of the presumed precursors zeaxanthin and ß-cryptoxanthin. Functional analysis of CCD4b1 by in vitro assays unequivocally demonstrated the asymmetric cleavage activity at the 7',8' double bond in zeaxanthin and ß-cryptoxanthin, confirming its role in C30 apocarotenoid biosynthesis. Thus, a novel plant carotenoid cleavage activity targeting the 7',8' double bond of cyclic C40 carotenoids has been identified. These results suggest that the presented enzyme is responsible for the biosynthesis of C30 apocarotenoids in Citrus which are key pigments in fruit coloration.


Assuntos
Carotenoides/biossíntese , Carotenoides/metabolismo , Citrus/metabolismo , Sequência de Aminoácidos , Carotenoides/química , Cromatografia Líquida de Alta Pressão , Citrus/efeitos dos fármacos , Citrus/genética , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Temperatura Alta , Modelos Moleculares , Dados de Sequência Molecular , Família Multigênica , Especificidade de Órgãos/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodução/efeitos dos fármacos , Reprodução/genética , Alinhamento de Sequência
18.
New Phytol ; 197(1): 36-48, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23127167

RESUMO

The dispersal of seeds away from parent plants seems to be the underlying selective force in the evolution of fleshy fruits attractive to animals. Secondary metabolites, which are not essential compounds for plant survival, are involved in the interaction of fleshy fruits with seed dispersers and antagonists. Plant volatile organic compounds (VOCs) are secondary metabolites that play important roles in biotic interactions and in abiotic stress responses. They are usually accumulated at high levels in specific plant tissues and organs, such as fleshy fruits. The study of VOCs emitted during fruit development and after different biotic challenges may help to determine the interactions of fleshy fruits not only with legitimate vertebrate dispersers, but also with insects and microorganisms. A knowledge of fruit VOCs could be used in agriculture to generate attraction or repellency to pests and resistance to pathogens in fruits. This review provides an examination of specific fruit VOC blends as signals for either seed dispersal or predation through simple or complex trophic chains, which may also have consequences for an understanding of the importance of biodiversity in wild areas.


Assuntos
Frutas/química , Herbivoria/fisiologia , Dispersão de Sementes , Compostos Orgânicos Voláteis/química , Adaptação Fisiológica , Animais , Produtos Agrícolas/química , Produtos Agrícolas/microbiologia , Frutas/microbiologia , Insetos/fisiologia , Doenças das Plantas/microbiologia , Fenômenos Fisiológicos Vegetais , Plantas/microbiologia , Seleção Genética , Vertebrados/fisiologia , Volatilização
19.
Plant Physiol ; 156(2): 793-802, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21525333

RESUMO

Plants use volatile terpene compounds as odor cues for communicating with the environment. Fleshy fruits are particularly rich in volatiles that deter herbivores and attract seed dispersal agents. We have investigated how terpenes in citrus fruit peels affect the interaction between the plant, insects, and microorganisms. Because limonene represents up to 97% of the total volatiles in orange (Citrus sinensis) fruit peel, we chose to down-regulate the expression of a limonene synthase gene in orange plants by introducing an antisense construct of this gene. Transgenic fruits showed reduced accumulation of limonene in the peel. When these fruits were challenged with either the fungus Penicillium digitatum or with the bacterium Xanthomonas citri subsp. citri, they showed marked resistance against these pathogens that were unable to infect the peel tissues. Moreover, males of the citrus pest medfly (Ceratitis capitata) were less attracted to low limonene-expressing fruits than to control fruits. These results indicate that limonene accumulation in the peel of citrus fruit appears to be involved in the successful trophic interaction between fruits, insects, and microorganisms. Terpene down-regulation might be a strategy to generate broad-spectrum resistance against pests and pathogens in fleshy fruits from economically important crops. In addition, terpene engineering may be important for studying the basic ecological interactions between fruits, herbivores, and pathogens.


Assuntos
Ceratitis capitata/fisiologia , Citrus sinensis/parasitologia , Regulação para Baixo , Frutas/química , Interações Hospedeiro-Patógeno , Odorantes/análise , Terpenos/metabolismo , Monoterpenos Acíclicos , Animais , Citrus sinensis/efeitos dos fármacos , Citrus sinensis/genética , Citrus sinensis/microbiologia , Cicloexenos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Frutas/efeitos dos fármacos , Frutas/microbiologia , Frutas/parasitologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Limoneno , Masculino , Dados de Sequência Molecular , Penicillium/efeitos dos fármacos , Penicillium/crescimento & desenvolvimento , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas , Terpenos/farmacologia , Compostos Orgânicos Voláteis/análise
20.
Plant Signal Behav ; 6(11): 1820-3, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22212123

RESUMO

Plant volatiles include terpenoids, which are generally involved in plant defense, repelling pests and pathogens and attracting insects for herbivore control, pollination and seed dispersal. Orange fruits accumulate the monoterpene limonene at high levels in the oil glands of their fruit peels. When limonene production was downregulated in orange fruits by the transgenic expression of a limonene synthase (CitMTSE1) in the antisense configuration, these fruits were resistant to the fungus Penicillium digitatum (Pers.) Sacc. and the bacterium Xanthomonas citri subsp. citri and were less attractive to the medfly pest Ceratitis capitata. These responses were reversed when the antisense transgenic orange fruits were treated with limonene. To gain more insight into the role of the limonene concentration in fruit responses to pests and pathogens, we attempted to overexpress CitMTSE1 in the sense configuration in transgenic orange fruits. Only slight increases in the amount of limonene were found in sense transgenic fruits, maybe due to the detrimental effect that excessive limonene accumulation would have on plant development. Collectively, these results suggest that when limonene reaches peak levels as the fruit develops, it becomes a signal for pest and pathogen attraction, which facilitate access to the fruit for pulp consumers and seed dispersers.


Assuntos
Ceratitis capitata , Citrus sinensis/química , Citrus sinensis/microbiologia , Cicloexenos/química , Doenças das Plantas , Terpenos/química , Animais , Citrus sinensis/genética , Resistência à Doença , Frutas/química , Regulação da Expressão Gênica de Plantas , Liases Intramoleculares/genética , Limoneno , Penicillium/patogenicidade , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...