Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mini Rev Med Chem ; 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37885112

RESUMO

Quinoxaline derivatives have been incorporated into numerous marketed drugs used for the treatment of various diseases. Examples include glecaprevir (Mavyret), voxilaprevir (Vosevi), Balversa (L01EX16) (erdafitinib), carbadox, XK469R (NSC698215), and becampanel (AMP397). These quinoxaline derivatives exhibit a diverse range of pharmacological activities, including antibacterial, antitubercular, antiviral, anti-HIV, anti-inflammatory, antifungal, anticancer, antiproliferative, antitumor, kinase inhibition, antimicrobial, antioxidant, and analgesic effects. Recognizing the significance of these bioactive quinoxaline derivatives, researchers have dedicated their efforts to developing various synthetic methods for their production. This review aimed to compile the most recent findings on the synthesis and biological properties of quinoxaline derivatives from 2015 to 2023.

2.
Bioorg Chem ; 134: 106433, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36842318

RESUMO

New 6,7-dimethylquinoxalin-2(1H)-one and hydrazineylidene thiazol-4-one derivatives were synthesized, and evaluated for their in vitro antimicrobial activity. The obtained results revealed marked antimicrobial potential against four bacterial, and two fungal strains. Both 6,7-dimethyl-3-(2-(4-nitrophenyl)-2-oxoethyl)quinoxalin-2(1H)-one (4d), and 2-(2-(9H-fluoren-9-ylidene)hydrazineyl)-5-(2-(p-tolyl)hydrazineylidene)thiazol-4(5H)-one (11b) displayed significant antibacterial and antifungal activities having MIC ranges (1.98-15.6 mg/mL) and (1.98-3.9 mg/mL) compared to Tetracycline and Amphotericin B as standard drugs. In addition, they showed noticeable inhibitory activity against DNA gyrase enzyme. Interestingly the thiazole derivative (11b) showed marked inhibitory activity against DNA gyrase with IC50 = 7.82 ± 0.45 µM better than that of ciprofloxacin. The time-kill kinetics profile of the most active compounds against S. aureus and E. coli microorganisms displayed both concentration dependent and time dependent reduction in the number of viable cells. Furthermore, molecular docking study of both compounds in the DNA gyrase binding site was performed, showing agreement with the in vitro inhibitory activities.


Assuntos
DNA Girase , Tiazóis , DNA Girase/metabolismo , Tiazóis/química , Simulação de Acoplamento Molecular , Staphylococcus aureus/metabolismo , Escherichia coli/metabolismo , Antibacterianos/química , Testes de Sensibilidade Microbiana , Inibidores da Topoisomerase II , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...