Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ Comput Sci ; 7: e395, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33817041

RESUMO

The Chain Matrix Multiplication Problem (CMMP) is an optimization problem that helps to find the optimal way of parenthesization for Chain Matrix Multiplication (CMM). This problem arises in various scientific applications such as in electronics, robotics, mathematical programing, and cryptography. For CMMP the researchers have proposed various techniques such as dynamic approach, arithmetic approach, and sequential multiplication. However, these techniques are deficient for providing optimal results for CMMP in terms of computational time and significant amount of scalar multiplication. In this article, we proposed a new model to minimize the Chain Matrix Multiplication (CMM) operations based on group counseling optimizer (GCO). Our experimental results and their analysis show that the proposed GCO model has achieved significant reduction of time with efficient speed when compared with sequential chain matrix multiplication approach. The proposed model provides good performance and reduces the multiplication operations varying from 45% to 96% when compared with sequential multiplication. Moreover, we evaluate our results with the best known dynamic programing and arithmetic multiplication approaches, which clearly demonstrate that proposed model outperforms in terms of computational time and space complexity.

2.
PeerJ Comput Sci ; 7: e377, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33834093

RESUMO

Real-world optimization problems are getting more and more complex due to the involvement of inter dependencies. These complex problems need more advanced optimizing techniques. The Traveling Thief Problem (TTP) is an optimization problem that combines two well-known NP-Hard problems including the 0/1 knapsack problem and traveling salesman problem. TTP contains a person known as a thief who plans a tour to collect multiple items to fill his knapsack to gain maximum profit while incurring minimum cost in a standard time interval of 600 s. This paper proposed an efficient technique to solve the TTP problem by rearranging the steps of the knapsack. Initially, the picking strategy starts randomly and then a traversal plan is generated through the Lin-Kernighan heuristic. This traversal is then improved by eliminating the insignificant cities which contribute towards profit adversely by applying the modified simulated annealing technique. The proposed technique on different instances shows promising results as compared to other state-of-the-art algorithms. This technique has outperformed on a small and medium-size instance and competitive results have been obtained in the context of relatively larger instances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...