Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pediatr ; 10: 895074, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35692981

RESUMO

Background: Molecular diagnosis of early onset inflammatory bowel disease (IBD) is very important for adopting suitable treatment strategies. Owing to the sparse data available, this study aims to identify the molecular basis of early onset IBD in Arab patients. Methods: A consanguineous Arab family with monozygotic twins presenting early onset IBD was screened by whole exome sequencing (WES). The variants functional characterization was performed by a series of computational biology methods. The IBD variants were further screened in in-house whole exome data of 100 Saudi cohorts ensure their rare prevalence in the population. Results: Genetic screening has identified the digenic autosomal recessive mode of inheritance of ITGAV (G58V) and FN1 (G313V) variants in IBD twins with early onset IBD. Findings from pathogenicity predictions, stability and molecular dynamics have confirmed the deleterious nature of both variants on structural features of the corresponding proteins. Functional biology data suggested that both genes show abundant expression in gastrointestinal tract and immune organs, involved in immune cell restriction, regulation of different immune related pathways. Data from knockout mouse models for ITGAV gene has revealed that the dysregulated expression of this gene impacts intestinal immune homeostasis. The defective ITGAV and FN1 involved in integrin pathway, are likely to induce intestinal inflammation by disturbing immune homeostasis. Conclusions: Our findings provide novel insights into the molecular etiology of pediatric onset IBD and may likely pave way in developing genomic medicine.

2.
Genomics ; 112(6): 5072-5085, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32920122

RESUMO

Myocardial infarction (MI) is the most prevalent coronary heart disease caused by the complex molecular interactions between multiple genes and environment. Here, we aim to identify potential biomarkers for the disease development and for prognosis of MI. We have used gene expression dataset (GSE66360) generated from 51 healthy controls and 49 patients experiencing acute MI and analyzed the differentially expressed genes (DEGs), protein-protein interactions (PPI), gene network-clusters to annotate the candidate pathways relevant to MI pathogenesis. Bioinformatic analysis revealed 810 DEGs. Their functional annotations have captured several MI targeting biological processes and pathways like immune response, inflammation and platelets degranulation. PPI network identify seventeen hub and bottleneck genes, whose involvement in MI was further confirmed by DisGeNET database. OpenTarget Platform reveal unique bottleneck genes as potential target for MI. Our findings identify several potential biomarkers associated with early stage MI providing a new insight into molecular mechanism underlying the disease.


Assuntos
Infarto do Miocárdio/genética , Biomarcadores , Expressão Gênica , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , MicroRNAs/metabolismo , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/metabolismo , Mapeamento de Interação de Proteínas , Biologia de Sistemas
3.
Saudi J Biol Sci ; 27(6): 1494-1502, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32489286

RESUMO

Celiac disease (CD) is a gastrointestinal disorder whose genetic basis is not fully understood. Therefore, we studied a Saudi family with two CD affected siblings to discover the causal genetic defect. Through whole exome sequencing (WES), we identified that both siblings have inherited an extremely rare and deleterious CPED1 genetic variant (c.241 A > G; p.Thr81Ala) segregating as autosomal recessive mutation, suggesting its putative causal role in the CD. Saudi population specific minor allele frequency (MAF) analysis has confirmed its extremely rare prevalence in homozygous condition (MAF is 0.0004). The Sanger sequencing analysis confirmed the absence of this homozygous variant in 100 sporadic Saudi CD cases. Genotype-Tissue Expression (GTEx) data has revealed that CPED1 is abundantly expressed in gastrointestinal mucosa. By using a combination of systems biology approaches like protein 3D modeling, stability analysis and nucleotide sequence conservation analysis, we have further established that this variant is deleterious to the structural and functional aspects of CPED1 protein. To the best of our knowledge, this variant has not been previously reported in CD or any other gastrointestinal disease. The cell culture and animal model studies could provide further insight into the exact role of CPED1 p.Thr81Ala variant in the pathophysiology of CD. In conclusion, by using WES and systems biology analysis, present study for the first-time reports CPED1 as a potential causative gene for CD in a Saudi family with potential implications to both disease diagnosis and genetic counseling.

4.
J Gene Med ; 22(6): e3176, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32073192

RESUMO

BACKGROUND: Familial hypercholesterolemia (FH) is a lipid disorder caused by pathogenic mutations in LDLRAP1 gene. The present study has aimed to deepen our understanding about the pathogenicity predictions of FH causative genetic mutations, as well as their relationship to phenotype changes in LDLRAP1 protein, by utilizing multidirectional computational analysis. METHODS: FH linked LDLRAP1 mutations were mined from databases, and the prediction ability of several pathogenicity classifiers against these clinical variants, was assessed through different statistical measures. Furthermore, these mutations were 3D modelled in protein structures to assess their impact on protein phenotype changes. RESULTS: Our findings suggest that Polyphen-2, when compared with SIFT, M-CAP and CADD tools, can make better pathogenicity predictions for FH causative LDLRAP1 mutations. Through, 3D simulation and superimposition analysis of LDLRAP1 protein structures, it was found that missense mutations do not create any gross changes in the protein structure, although they could induce subtle structural changes at the level of amino acid residues. Near native molecular dynamic analysis revealed that missense mutations could induce variable degrees of fluctuation differences guiding the protein flexibility. Stability analysis showed that most missense mutations shifts the free energy equilibrium and hence they destabilize the protein. Molecular docking analysis demonstrates the molecular shifts in hydrogen and ionic bonds and Van der waals bonding properties, which further cause differences in the binding energy of LDLR-LDLRAP1 proteins. CONCLUSIONS: The diverse computational approaches used in the present study may provide a new dimension for exploring the structure-function relationship of the novel and deleterious LDLRAP1 mutations linked to FH.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Mutação , Fases de Leitura Aberta , Proteínas Adaptadoras de Transdução de Sinal/química , Substituição de Aminoácidos , Biologia Computacional/métodos , Bases de Dados Genéticas , Estudos de Associação Genética/métodos , Genótipo , Humanos , Modelos Moleculares , Mutação de Sentido Incorreto , Fenótipo , Ligação Proteica , Curva ROC , Relação Estrutura-Atividade
5.
Front Pediatr ; 7: 44, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30847336

RESUMO

Background: Lamellar ichthyosis is an autosomal recessive type of rare skin disorders characterized with defective epidermis leading hyperkeratosis with brownish-gray scales over the body. These patients are born as collodion babies and may also exhibit additional features like erythema, ectropion, and eclabium. This disease is mainly caused by homozygous and compound heterozygous alterations in transglutaminase 1 encoding gene (TGM1), which is located on 14q12. Case presentation: This study reports the genetic analysis of a 4-year Saudi girl presenting lamellar ichthyosis. She was the first child of unrelated parents. The family had no previous history of the disease phenotype. She was born as a collodion baby without any prenatal complications. At the time of this study she had developed rough scaly skin on her legs, arms and trunk regions with thick palms and soles. Whole exome sequencing (WES) followed by Sanger sequence validation identified a novel compound heterozygous variant in TGM1 gene. The paternal variant was a missense transition (c.1141G>A; p.Ala381Thr) present at exon 7, while maternal variant (c.758-1G>C) was present at the intron4-exon5 boundary. To the best of our knowledge these variants had not been reported before in TGM1 gene. Conclusion: In isolated and inbred populations, homozygous variants are identified more frequently; however, our results suggest that compound heterozygous variants should also be considered especially when the marriages are not consanguineous.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...