Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(9): 6438-6447, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33718734

RESUMO

Herein, we report a simple incorporation of PtO NPs at diverse percentages (0.2-0.8 wt %) onto a highly crystalline and mesoporous ZnO matrix by the wet-impregnation approach for degradation of tetracycline (TC) upon visible light exposure. These well-dispersed and small-sized PtO NPs provide the mesoporous PtO-ZnO nanocomposites with outstanding photocatalytic performance for complete TC degradation. The optimized 0.6% PtO-ZnO photocatalyst exhibits excellent TC degradation, and its degradation efficiency reached ∼99% within 120 min. The photocatalytic performance of the 0.6% PtO-ZnO nanocomposite is 20 and 10 times higher than that of pristine ZnO and commercial P-25, respectively. The photodegradation rate of TC over the 0.6% PtO-ZnO nanocomposite is 34 and 12.5 times greater than that of pristine ZnO and commercial P-25, respectively. This is because of the large surface area, unique porous structure, synergistic effect, and broad visible light absorption of the PtO-ZnO nanocomposite. Moreover, mesoporous PtO-ZnO nanocomposites showed a high stability and recyclability over five iterations. This work demonstrates the remarkable role of combining PtO and ZnO photocatalysts in providing nanocomposites with significant potential for the preservation of human health through wastewater remediation.

2.
ACS Omega ; 5(51): 33269-33279, 2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33403289

RESUMO

Fabrication of 3D mesoporous Ag2O-ZnO heterojunctions at varying Ag2O contents has been achieved through poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (Pluronic F-108) as the structure-directing agent for the first time. The mesoporous Ag2O-ZnO nanocomposites exhibited a mesoporous structure, which revealed a large pore volume and high surface area. The photocatalytic efficiency over mesoporous Ag2O-ZnO nanocomposites for tetracycline (TC) compared with that over commercial P-25 and pristine ZnO NPs through the visible light exposure was studied. Mesoporous 1.5% Ag2O-ZnO nanocomposites indicated the highest degradation efficiency of 100% of TC during 120 min of the visible light exposure compared with 5% and 10% for pristine ZnO NPs and commercial P-25, respectively. The TC degradation rate took place much rapidly over 1.5% Ag2O-ZnO nanocomposites (0.798 µmol L-1 min-1) as compared to either commercial P-25 (0.097 µmol L-1 min-1) or ZnO NPs (0.035 µmol L-1 min-1). The mesoporous 1.5% Ag2O-ZnO nanocomposite revealed the highest degradation rate among all synthesized samples, and it was 23 and 8 orders of magnitudes greater than those of pristine ZnO NPs and P-25, respectively. The photoluminescence and transient photocurrent intensity behaviors have been discussed to explore photocatalysis mechanisms. It is anticipated that the present work will contribute some suggestions for understanding other heterojunctions with outstanding behaviors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...