Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 14(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38893707

RESUMO

This study, utilizing high-throughput technologies and Machine Learning (ML), has identified gene biomarkers and molecular signatures in Inflammatory Bowel Disease (IBD). We could identify significant upregulated or downregulated genes in IBD patients by comparing gene expression levels in colonic specimens from 172 IBD patients and 22 healthy individuals using the GSE75214 microarray dataset. Our ML techniques and feature selection methods revealed six Differentially Expressed Gene (DEG) biomarkers (VWF, IL1RL1, DENND2B, MMP14, NAAA, and PANK1) with strong diagnostic potential for IBD. The Random Forest (RF) model demonstrated exceptional performance, with accuracy, F1-score, and AUC values exceeding 0.98. Our findings were rigorously validated with independent datasets (GSE36807 and GSE10616), further bolstering their credibility and showing favorable performance metrics (accuracy: 0.841, F1-score: 0.734, AUC: 0.887). Our functional annotation and pathway enrichment analysis provided insights into crucial pathways associated with these dysregulated genes. DENND2B and PANK1 were identified as novel IBD biomarkers, advancing our understanding of the disease. The validation in independent cohorts enhances the reliability of these findings and underscores their potential for early detection and personalized treatment of IBD. Further exploration of these genes is necessary to fully comprehend their roles in IBD pathogenesis and develop improved diagnostic tools and therapies. This study significantly contributes to IBD research with valuable insights, potentially greatly enhancing patient care.

2.
Sci Rep ; 14(1): 8180, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589431

RESUMO

N6-methyladenosine (6 mA) is the most common internal modification in eukaryotic mRNA. Mass spectrometry and site-directed mutagenesis, two of the most common conventional approaches, have been shown to be laborious and challenging. In recent years, there has been a rising interest in analyzing RNA sequences to systematically investigate mutated locations. Using novel methods for feature development, the current work aimed to identify 6 mA locations in RNA sequences. Following the generation of these novel features, they were used to train an ensemble of models using methods such as stacking, boosting, and bagging. The trained ensemble models were assessed using an independent test set and k-fold cross validation. When compared to baseline predictors, the suggested model performed better and showed improved ratings across the board for key measures of accuracy.


Assuntos
Adenosina , RNA , RNA/genética , RNA Mensageiro , Adenosina/genética , Projetos de Pesquisa
3.
Diagnostics (Basel) ; 13(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36832196

RESUMO

The high dimensionality and sparsity of the microarray gene expression data make it challenging to analyze and screen the optimal subset of genes as predictors of breast cancer (BC). The authors in the present study propose a novel hybrid Feature Selection (FS) sequential framework involving minimum Redundancy-Maximum Relevance (mRMR), a two-tailed unpaired t-test, and meta-heuristics to screen the most optimal set of gene biomarkers as predictors for BC. The proposed framework identified a set of three most optimal gene biomarkers, namely, MAPK 1, APOBEC3B, and ENAH. In addition, the state-of-the-art supervised Machine Learning (ML) algorithms, namely Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Neural Net (NN), Naïve Bayes (NB), Decision Tree (DT), eXtreme Gradient Boosting (XGBoost), and Logistic Regression (LR) were used to test the predictive capability of the selected gene biomarkers and select the most effective breast cancer diagnostic model with higher values of performance matrices. Our study found that the XGBoost-based model was the superior performer with an accuracy of 0.976 ± 0.027, an F1-Score of 0.974 ± 0.030, and an AUC value of 0.961 ± 0.035 when tested on an independent test dataset. The screened gene biomarkers-based classification system efficiently detects primary breast tumors from normal breast samples.

4.
Diagnostics (Basel) ; 12(7)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35885508

RESUMO

The increase in coronavirus disease 2019 (COVID-19) infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has placed pressure on healthcare services worldwide. Therefore, it is crucial to identify critical factors for the assessment of the severity of COVID-19 infection and the optimization of an individual treatment strategy. In this regard, the present study leverages a dataset of blood samples from 485 COVID-19 individuals in the region of Wuhan, China to identify essential blood biomarkers that predict the mortality of COVID-19 individuals. For this purpose, a hybrid of filter, statistical, and heuristic-based feature selection approach was used to select the best subset of informative features. As a result, minimum redundancy maximum relevance (mRMR), a two-tailed unpaired t-test, and whale optimization algorithm (WOA) were eventually selected as the three most informative blood biomarkers: International normalized ratio (INR), platelet large cell ratio (P-LCR), and D-dimer. In addition, various machine learning (ML) algorithms (random forest (RF), support vector machine (SVM), extreme gradient boosting (EGB), naïve Bayes (NB), logistic regression (LR), and k-nearest neighbor (KNN)) were trained. The performance of the trained models was compared to determine the model that assist in predicting the mortality of COVID-19 individuals with higher accuracy, F1 score, and area under the curve (AUC) values. In this paper, the best performing RF-based model built using the three most informative blood parameters predicts the mortality of COVID-19 individuals with an accuracy of 0.96 ± 0.062, F1 score of 0.96 ± 0.099, and AUC value of 0.98 ± 0.024, respectively on the independent test data. Furthermore, the performance of our proposed RF-based model in terms of accuracy, F1 score, and AUC was significantly better than the known blood biomarkers-based ML models built using the Pre_Surv_COVID_19 data. Therefore, the present study provides a novel hybrid approach to screen the most informative blood biomarkers to develop an RF-based model, which accurately and reliably predicts in-hospital mortality of confirmed COVID-19 individuals, during surge periods. An application based on our proposed model was implemented and deployed at Heroku.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...