Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 18(12)2018 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-30544877

RESUMO

Using Internet of Things (IoT) applications has been a growing trend in the last few years. They have been deployed in several areas of life, including secure and sensitive sectors, such as the military and health. In these sectors, sensory data is the main factor in any decision-making process. This introduces the need to ensure the integrity of data. Secure techniques are needed to detect any data injection attempt before catastrophic effects happen. Sensors have limited computational and power resources. This limitation creates a challenge to design a security mechanism that is both secure and energy-efficient. This work presents a Randomized Watermarking Filtering Scheme (RWFS) for IoT applications that provides en-route filtering to remove any injected data at an early stage of the communication. Filtering injected data is based on a watermark that is generated from the original data and embedded directly in random places throughout the packet's payload. The scheme uses homomorphic encryption techniques to conceal the report's measurement from any adversary. The advantage of homomorphic encryption is that it allows the data to be aggregated and, thus, decreases the packet's size. The results of our proposed scheme prove that it improves the security and energy consumption of the system as it mitigates some of the limitations in the existing works.

2.
Sensors (Basel) ; 18(7)2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29997354

RESUMO

This paper proposes a gossip-based protocol that utilises a multi-factor weighting function (MFWF) that takes several parameters into account: residual energy, Chebyshev distances to neighbouring nodes and the sink node, node density, and message priority. The effects of these parameters were examined to guide the customization of the weight function to effectively disseminate data to three types of IoT applications: critical, bandwidth-intensive, and energy-efficient applications. The performances of the three resulting MFWFs were assessed in comparison with the performances of the traditional gossiping protocol and the Fair Efficient Location-based Gossiping (FELGossiping) protocol in terms of end-to-end delay, network lifetime, rebroadcast nodes, and saved rebroadcasts. The experimental results demonstrated the proposed protocol's ability to achieve a much shorter delay for critical IoT applications. For bandwidth-intensive IoT application, the proposed protocol was able to achieve a smaller percentage of rebroadcast nodes and an increased percentage of saved rebroadcasts, i.e., better bandwidth utilisation. The adapted MFWF for energy-efficient IoT application was able to improve the network lifetime compared to that of gossiping and FELGossiping. These results demonstrate the high level of flexibility of the proposed protocol with respect to network context and message priority.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...