Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 12(2)2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31991599

RESUMO

The use of wood plastic composite lumber as a structural member material in marine applications is challenging due to the tendency of wood plastic composites (WPCs) to creep and absorb water. A novel patent-pending WPC formulation that combines a thermally modified wood flour (as a cellulosic material) and a high strength styrenic copolymer (high impact polystyrene and styrene maleic anhydride) have been developed with advantageous viscoelastic properties (low initial creep compliance and creep rate) compared with the conventional WPCs. In this study, the creep behavior of the WPC and high-density polyethylene (HDPE) lumber in flexure was characterized and compared. Three sample groupings of WPC and HDPE lumber were subjected to three levels of creep stress; 7.5, 15, and 30% of the ultimate flexural strength (Fb) for a duration of 180 days. Because of the relatively low initial creep compliance of the WPC specimens (five times less) compared with the initial creep compliance of HDPE specimens, the creep deformation of HDPE specimens was six times higher than the creep deformation of WPC specimens at the 30% creep stress level. A Power Law model predicted that the strain (3%) to failure in the HDPE lumber would occur in 1.5 years at 30% Fb flexural stress while the predicted strain (1%) failure for the WPC lumber would occur in 150 years. The findings of this study suggest using the WPC lumber in structural application to replace the HDPE lumber in flexure attributable to the low time-dependent deformation when the applied stress value is withing the linear region of the stress-strain relationship.

2.
Polymers (Basel) ; 12(1)2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31877724

RESUMO

Based on previous research, a novel wood-plastic composite (WPC) lumber has shown potential to replace high-density polyethylene (HDPE) lumber in the construction of aquacultural geodesic spherical cage structures. Six HDPE and six WPC assemblies, which are representative of typical full-size cage dimensions, were fabricated by bolting pairs of triangular panel components made with connected struts. Half of the panel assemblies had a plastic-coated steel wire mesh to simulate the actual restraint in field applications of the cages. The objective of the research was to characterize the structural performance of the panel assemblies under compressive loading. To determine the critical buckling load for the panel assemblies made from WPC and HDPE struts with and without wire mesh, Southwell's method was implemented. A two-dimensional (2D) linear finite element analysis model was developed to determine axial forces in the struts of the panel assembly for the applied load and boundary conditions. This model was used to determine strut compressive forces corresponding to the Southwell's method buckling load and the experimental failure load. It was found that the wire mesh increased the load capacity of both HDPE and WPC panel assemblies by a factor of two. The typical failure mode of the panels made from HDPE lumber struts, with and without wire mesh, was buckling of the struts, whereas the failure mode of the WPC panels, with and without wire mesh, was fracture at the notched section corresponding to the location of the bolts. The load capacity of the panel assemblies made from WPC lumber struts was three times and 2.5 times higher than the load capacity of the panel assemblies made from HDPE lumber struts with and without wire mesh, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...