Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 11(3)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805676

RESUMO

A microfluidic chip for electrochemical impedance spectroscopy (EIS) is presented as bio-sensor for label-free detection of proteins by using the example of cardiac troponin I. Troponin I is one of the most specific diagnostic serum biomarkers for myocardial infarction. The microfluidic impedance biosensor chip presented here consists of a microscope glass slide serving as base plate, sputtered electrodes, and a polydimethylsiloxane (PDMS) microchannel. Electrode functionalization protocols were developed considering a possible charge transfer through the sensing layer, in addition to analyte-specific binding by corresponding antibodies and reduction of nonspecific protein adsorption to prevent false-positive signals. Reagents tested for self-assembled monolayers (SAMs) on gold electrodes included thiolated hydrocarbons and thiolated oligonucleotides, where SAMs based on the latter showed a better performance. The corresponding antibody was covalently coupled on the SAM using carbodiimide chemistry. Sampling and measurement took only a few minutes. Application of a human serum albumin (HSA) sample, 1000 ng/mL, led to negligible impedance changes, while application of a troponin I sample, 1 ng/mL, led to a significant shift in the Nyquist plot. The results are promising regarding specific detection of clinically relevant concentrations of biomarkers, such as cardiac markers, with the newly developed microfluidic impedance biosensor chip.


Assuntos
Técnicas Biossensoriais , DNA/química , Microfluídica , Troponina I/análise , Anticorpos , Espectroscopia Dielétrica , Impedância Elétrica , Eletrodos , Ouro/química , Humanos
2.
Mol Cell Biol ; 39(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31138664

RESUMO

Increased ribosomal biogenesis occurs during tissue hypertrophy, but whether ribosomal biogenesis is impaired during atrophy is not known. We show that hyperammonemia, which occurs in diverse chronic disorders, impairs protein synthesis as a result of decreased ribosomal content and translational capacity. Transcriptome analyses, real-time PCR, and immunoblotting showed consistent reductions in the expression of the large and small ribosomal protein subunits (RPL and RPS, respectively) in hyperammonemic murine skeletal myotubes, HEK cells, and skeletal muscle from hyperammonemic rats and human cirrhotics. Decreased ribosomal content was accompanied by decreased expression of cMYC, a positive regulator of ribosomal biogenesis, as well as reduced expression and activity of ß-catenin, a transcriptional activator of cMYC. However, unlike the canonical regulation of ß-catenin via glycogen synthase kinase 3ß (GSK3ß)-dependent degradation, GSK3ß expression and phosphorylation were unaltered during hyperammonemia, and depletion of GSK3ß did not prevent ammonia-induced degradation of ß-catenin. Overexpression of GSK3ß-resistant variants, genetic depletion of IκB kinase ß (IKKß) (activated during hyperammonemia), protein interactions, and in vitro kinase assays showed that IKKß phosphorylated ß-catenin directly. Overexpressing ß-catenin restored hyperammonemia-induced perturbations in signaling responses that regulate ribosomal biogenesis. Our data show that decreased protein synthesis during hyperammonemia is mediated via a novel GSK3ß-independent, IKKß-dependent impairment of the ß-catenin-cMYC axis.


Assuntos
Hiperamonemia/metabolismo , Subunidades Ribossômicas Menores/genética , Subunidades Ribossômicas Menores/metabolismo , beta Catenina/química , beta Catenina/genética , Animais , Linhagem Celular , Modelos Animais de Doenças , Fibrose , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Humanos , Hiperamonemia/genética , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Camundongos , Proteólise , Proteômica , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ratos , Análise de Sequência de RNA , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...