Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comput Appl Math ; 3952021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34092904

RESUMO

For medical professionals caring for patients undergoing mechanical ventilation due to respiratory failure, the ability to quickly and safely obtain images of pulmonary function at the patient's bedside would be highly desirable. Such images could be used to provide early warnings of developing pulmonary pathologies in real time, thereby reducing the incidence of complications and improving patient outcomes. Electrical impedance tomography (EIT) and low-frequency ultrasound computed tomography (USCT) are two imaging techniques with the potential to provide real-time non-ionizing pulmonary monitoring in the ICU setting, and each method has its own unique advantages as well as drawbacks. In this work, we describe a new algorithm for a system in which the strengths of the two modalities are combined in a complementary fashion. Specifically, preliminary reconstructions from each modality are used as priors to stabilize subsequent reconstructions, providing improved spatial resolution, sharper organ boundaries, and enhanced appearance of pathologies and other features. Results are validated using three numerically simulated thoracic phantoms representing pulmonary pathologies.

2.
J Comput Appl Math ; 362: 276-294, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31379404

RESUMO

A method of including dynamic spatial priors in the 2-D D-bar reconstruction algorithm is presented for use on time-difference reconstructions of human subject thoracic data. The conductivity values for the prior are updated at each frame in the reconstruction using an optimization method applied to the scattering transform. The updates of the dynamic spatial priors are guided by a principle component analysis of the data to determine the timepoint in the ventilatory (or cardiac) cycle. The effectiveness of the method is demonstrated on human subject ventilatory data.

3.
IEEE Trans Instrum Meas ; 68(9): 3137-3150, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33223563

RESUMO

The design and performance of the ACE1 (Active Complex Electrode) electrical impedance tomography system for single-ended phasic voltage measurements is presented. The design of the hardware and calibration procedures allow for reconstruction of conductivity and permittivity images. Phase measurement is achieved with the ACE1 active electrode circuit which measures the amplitude and phase of the voltage and the applied current at the location at which current is injected into the body. An evaluation of the system performance under typical operating conditions includes details of demodulation and calibration and an in-depth look at insightful metrics, such as signal-to-noise ratio variations during a single current pattern. Static and dynamic images of conductivity and permittivity are presented from ACE1 data collected on tank phantoms and human subjects to illustrate the system's utility.

4.
Physiol Meas ; 39(5): 05NT01, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29726838

RESUMO

OBJECTIVE: Electrical impedance tomography (EIT) has been shown to be a viable non-invasive, bedside imaging modality to monitor lung function. This paper introduces a method for identifying regions of air trapping from EIT data collected during tidal breathing and breath-holding maneuvers. APPROACH: Ventilation-perfusion index maps are computed from dynamic EIT images. These maps are then used to identify regions of air trapping in the area of the lung as regions that are poorly ventilated but well perfused throughout the breathing and cardiac cycles. These EIT-identified regions are then compared with independently identified regions of low attenuation, or air trapping, on chest CT. Results of this method are demonstrated in two children with cystic fibrosis and on a healthy control subject. MAIN RESULTS: In both CF children, the EIT-identified regions of air trapping matched the regions indicated from the chest CT. The EIT-based method is only validated with CT scans within 4 cm of the chest cross-section defined by the electrode plane. SIGNIFICANCE: The results indicate the potential use of EIT-derived ventilation-perfusion index maps as a non-invasive method for identifying regions of air trapping.


Assuntos
Ar , Processamento de Imagem Assistida por Computador , Respiração , Tomografia , Criança , Fibrose Cística/diagnóstico por imagem , Fibrose Cística/fisiopatologia , Impedância Elétrica , Feminino , Humanos , Masculino
5.
Physiol Meas ; 39(4): 045008, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29565263

RESUMO

OBJECTIVE: Lung function monitoring by spirometry plays a critical role in the clinical care of pediatric cystic fibrosis (CF) patients, but many young children are unable to perform spirometry, and the outputs are often normal even in the presence of lung disease. Measures derived from electrical impedance tomography (EIT) images were studied for their utility as potential surrogates for spirometry in CF patients and to assess response to intravenous antibiotic treatment for acute pulmonary exacerbations (PEx) in a subset of patients. APPROACH: EIT data were collected on 35 subjects (21 with CF, 14 healthy controls, 8 CF patients pre- and post-treatment for an acute PEx) ages 2 to 20 years during tidal breathing and also concurrently with spirometry on subjects over age 8. EIT-derived measures of FEV1, FVC, and FEV1/FVC were computed globally and regionally from dynamic EIT images. MAIN RESULTS: Global EIT-derived FEV1/FVC showed good correlation with spirometry FEV1/FVC values (r = 0.54, p = 0.01), and were able to distinguish between the groups (p = 0.01). Lung heterogeneity was assessed through the spatial coefficient of variation (CV) of EIT difference images between key time points, and the CVs for EIT-derived FEV1 and FVC showed significant correlation with the CV for tidal breathing (r = 0.47, p = 0.01 and r = 0.50, p = 0.01, respectively). Global EIT-derived FEV1/FVC was better able to distinguish between groups than spirometry FEV1 (F-values 776.5 and 146.3, respectively, p < 0.01.) The same held true for the CVs for EIT-derived FEV1, FVC, and tidal breathing (F-values 215.93, 193.89, 204.57, respectively, p < 0.01). SIGNIFICANCE: The strong correlation between the CVs for tidal breathing, FEV1, and FVC, and the statistically significant ability of CV for tidal breathing to distinguish between healthy subjects and CF patients, and between the studied CF disease states suggests that the CV may be useful for measuring the extent and severity of structural lung disease.


Assuntos
Fibrose Cística/diagnóstico por imagem , Fibrose Cística/fisiopatologia , Testes de Função Respiratória , Tomografia , Adolescente , Criança , Fibrose Cística/genética , Impedância Elétrica , Feminino , Genótipo , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...