Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Healthc Eng ; 2022: 4096950, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35368915

RESUMO

Individuals with pre-existing diabetes seem to be vulnerable to the COVID-19 due to changes in blood sugar levels and diabetes complications. As observed globally, around 20-50% of individuals affected by coronavirus had diabetes. However, there is no recent finding that diabetic patients are more prone to contract COVID-19 than nondiabetic patients. However, a few recent findings have observed that it could be at least twice as likely to die from complications of diabetes. Considering the multifold mortality rate of COVID-19 in diabetic patients, this study proposes a COVID-19 risk prediction model for diabetic patients using a fuzzy inference system and machine learning approaches. This study aimed to estimate the risk level of COVID-19 in diabetic patients without a medical practitioner's advice for timely action and overcoming the multifold mortality rate of COVID-19 in diabetic patients. The proposed model takes eight input parameters, which were found as the most influential symptoms in diabetic patients. With the help of the various state-of-the-art machine learning techniques, fifteen models were built over the rule base. CatBoost classifier gives the best accuracy, recall, precision, F1 score, and kappa score. After hyper-parameter optimization, CatBoost classifier showed 76% accuracy and improvements in the recall, precision, F1 score, and kappa score, followed by logistic regression and XGBoost with 75.1% and 74.7% accuracy. Stratified k-fold cross-validation is used for validation purposes.


Assuntos
COVID-19 , Diabetes Mellitus , Algoritmos , Humanos , Modelos Logísticos , Aprendizado de Máquina
2.
IEEE Access ; 9: 44173-44197, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34786312

RESUMO

This conceptual paper overviews how blockchain technology is involving the operation of multi-robot collaboration for combating COVID-19 and future pandemics. Robots are a promising technology for providing many tasks such as spraying, disinfection, cleaning, treating, detecting high body temperature/mask absence, and delivering goods and medical supplies experiencing an epidemic COVID-19. For combating COVID-19, many heterogeneous and homogenous robots are required to perform different tasks for supporting different purposes in the quarantine area. Managmnt and decentralizing multi-robot play a vital role in combating COVID-19 by reducing human interaction, monitoring, delivering goods. Blockchain technology can manage multi-robot collaboration in a decentralized fashion, improve the interaction among them to exchange information, share representation, share goals, and trust. We highlight the challenges and provide the tactical solutions enabled by integrating blockchain and multi-robot collaboration to combat the COVID-19 pandemic. The proposed conceptual framework can increase the intelligence, decentralization, and autonomous operations of connected multi-robot collaboration in the blockchain network. We overview blockchain potential benefits to defining a framework of multi-robot collaboration applications to combat COVID-19 epidemics such as monitoring and outdoor and hospital End to End (E2E) delivery systems. Furthermore, we discuss the challenges and opportunities of integrated blockchain, multi-robot collaboration, and the Internet of Things (IoT) for combating COVID-19 and future pandemics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...