Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Liver Int ; 38(5): 858-867, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28941022

RESUMO

BACKGROUND & AIMS: Liver fibrosis is the outcome of chronic liver injury. Transforming growth factor-ß (TGF-ß) is a major profibrogenic cytokine modulating hepatic stellate cell (HSC) activation and extracellular matrix homeostasis. This study analyses the effect of Endoglin (Eng), a TGF-ß type III auxiliary receptor, on fibrogenesis in two models of liver injury by HSC-specific endoglin deletion. METHODS: Eng expression was measured in human and murine samples of liver injury. After generating GFAPCre(+) EngΔHSC mice, the impact of Endoglin deletion on chronic liver fibrosis was analysed. For in vitro analysis, Engflox/flox HSCs were infected with Cre-expressing virus to deplete Endoglin and fibrogenic responses were analysed. RESULTS: Endoglin is upregulated in human liver injury. The receptor is expressed in liver tissues and mesenchymal liver cells with much higher abundance of the L-Eng splice variant. Comparing GFAPCre(-) Engf/f to GFAPCre(+) EngΔHSC mice in toxic liver injury, livers of GFAPCre(+) EngΔHSC mice showed 39.9% (P < .01) higher Hydroxyproline content compared to GFAPCre(-) Engf/f littermates. Sirius Red staining underlined these findings, showing 58.8% (P < .05) more Collagen deposition in livers of GFAPCre(+) EngΔHSC mice. Similar results were obtained in mice subjected to cholestatic injury. CONCLUSION: Endoglin isoforms are differentially upregulated in liver samples of patients with chronic and acute liver injury. Endoglin deficiency in HSC significantly aggravates fibrosis in response to injury in two different murine models of liver fibrosis and increases α-SMA and fibronectin expression in vitro. This suggests that Endoglin protects against fibrotic injury, likely through modulation of TGF-ß signalling.


Assuntos
Endoglina/metabolismo , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/genética , Fator de Crescimento Transformador beta/metabolismo , Animais , Modelos Animais de Doenças , Endoglina/genética , Fibronectinas/metabolismo , Humanos , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Proteção , Transdução de Sinais
2.
World J Biol Chem ; 5(2): 180-203, 2014 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-24921008

RESUMO

Endoglin, also known as cluster of differentiation CD105, was originally identified 25 years ago as a novel marker of endothelial cells. Later it was shown that endoglin is also expressed in pro-fibrogenic cells including mesangial cells, cardiac and scleroderma fibroblasts, and hepatic stellate cells. It is an integral membrane-bound disulfide-linked 180 kDa homodimeric receptor that acts as a transforming growth factor-ß (TGF-ß) auxiliary co-receptor. In humans, several hundreds of mutations of the endoglin gene are known that give rise to an autosomal dominant bleeding disorder that is characterized by localized angiodysplasia and arteriovenous malformation. This disease is termed hereditary hemorrhagic telangiectasia type I and induces various vascular lesions, mainly on the face, lips, hands and gastrointestinal mucosa. Two variants of endoglin (i.e., S- and L-endoglin) are formed by alternative splicing that distinguishes from each other in the length of their cytoplasmic tails. Moreover, a soluble form of endoglin, i.e., sol-Eng, is shedded by the matrix metalloprotease-14 that cleaves within the extracellular juxtamembrane region. Endoglin interacts with the TGF-ß signaling receptors and influences Smad-dependent and -independent effects. Recent work has demonstrated that endoglin is a crucial mediator during liver fibrogenesis that critically controls the activity of the different Smad branches. In the present review, we summarize the present knowledge of endoglin expression and function, its involvement in fibrogenic Smad signaling, current models to investigate endoglin function, and the diagnostic value of endoglin in liver disease.

3.
Int J Clin Exp Pathol ; 6(4): 678-85, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23573314

RESUMO

Fibrosis or scarring of the liver parenchyma is a mainstay of chronic liver diseases and is associated with increased morbidity and mortality. Since complete scarring of the liver develops over several decades, therapeutic intervention with the aim of ameliorating fibrosis is of great clinical interest. In a recent study, we could identify the chemokine receptor antagonist Met-CCL5 as a potential compound to inhibit fibrosis progression and accelerate its regression. In the current study we characterized immune changes during fibrosis regression associated with the treatment with the CCL5 (RANTES) chemokine receptor antagonist Met-CCL5 in an established mouse model of chronic liver damage. Met-CCL5 or PBS was given after fibrosis induction (8 weeks of CCl(4)) and mice were sacrificed three and seven days after peak fibrosis. Mouse livers were analyzed for immune cell infiltration and cytokine gene expression. The results show that overall monocyte recruitment was not affected by Met-CCL5, but there was a significant shift to a pro-inflammatory Gr1+ monocyte population in the livers of mice treated with Met-CCL5. These monocytes were mostly iNOS +, a phenomenon which was also evident when analyzing the overall gene expression profiles in the livers. Since a shift in monocyte subpopulations has recently been identified to contribute to fibrosis regression, our results help explaining the efficacy of CCL5 chemokine antagonism as a novel treatment option for fibrotic liver diseases.


Assuntos
Quimiocina CCL5/antagonistas & inibidores , Cirrose Hepática/patologia , Cirrose Hepática/prevenção & controle , Monócitos/efeitos dos fármacos , Monócitos/patologia , Receptores CCR/antagonistas & inibidores , Animais , Tetracloreto de Carbono/efeitos adversos , Contagem de Células , Quimiocina CCL5/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/metabolismo , Receptores CCR/efeitos dos fármacos
4.
PLoS One ; 8(2): e56116, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23437087

RESUMO

Hepatic stellate cells (HSCs) play a major role in the pathogenesis of liver fibrosis. Working on primary HSCs requires difficult isolation procedures; therefore we have generated and here characterize a mouse hepatic stellate cell line expressing GFP under control of the collagen 1(I) promoter/enhancer. These cells are responsive to pro-fibrogenic stimuIi, such as PDGF or TGF-ß1, and are able to activate intracellular signalling pathways including Smads and MAP kinases. Nevertheless, due to the basal level of activation, TGF-ß1 did not significantly induce GFP expression contrasting the TGF-ß1 regulated endogenous collagen I expression. We could demonstrate that the accessory TGF-ß-receptor endoglin, which is endogenously expressed at very low levels, has a differential effect on signalling of these cells when transiently overexpressed. In the presence of endoglin activation of Smad1/5/8 was drastically enhanced. Moreover, the phosphorylation of ERK1/2 was increased, and the expression of vimentin, α-smooth muscle actin and connective tissue growth factor was upregulated. Endoglin induced a slight increase in expression of the inhibitor of differentiation-2 while the amount of endogenous collagen type I was reduced. Therefore, this profibrogenic cell line with hepatic stellate cell origin is not only a promising novel experimental tool, which can be used in vivo for cell tracing experiments. Furthermore it allows investigating the impact of various regulatory proteins (e.g. endoglin) on profibrogenic signal transduction, differentiation and hepatic stellate cell biology.


Assuntos
Células Estreladas do Fígado/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Animais , Becaplermina , Biomarcadores/metabolismo , Linhagem Celular Transformada , Colágeno/metabolismo , Endoglina , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fluorescência , Proteínas de Fluorescência Verde/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/enzimologia , Células Estreladas do Fígado/patologia , Ligantes , Cirrose Hepática/enzimologia , Cirrose Hepática/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-sis/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...